Introduction to Theories of Chemical Reactions

Graduate Course Seminar
Beate Flemmig
FHI
I. Overview

What kind of reactions?

- gas phase / surface
- unimolecular / bimolecular
- thermal / photochemical
What kind of information?

- structure of reactants, products
- ΔE_{react}
- mechanism
- TS, E_a
- k
- τ, lifetime of intermediates
What kind of theoretical approach?

- **MO and VB theory**
 almost without calculation, based on symmetry arguments

- **Quantum Chemistry**
 Born-Oppenheimer approximation
 solution of electronic Schrödinger equation
 optimization of stationary points of PES
 follow IRC
 TD data \rightarrow TS theory
• **Molecular Dynamics**

 semiempirical potential

or calculation of forces ‘on the fly’ (CPMD)
 \(T \geq 0 \)

• **beyond BO (wave-packet dynamics)**

 more than one PES (photochemistry!)
 solution of nuclear SE
 real-time evolution of a chemical reaction
 related to “pump-probe“ spectroscopy or ”femtosecond chemistry”

• **statistical mechanics**

 many particles
An attempt to summarize the approaches ...

\[\psi(\{a, x, X, t\}) \]

\[\psi(x, x, X) \]

\[\psi(x, X) \]

Born Oppenheimer approximation or method

\[\psi(x) \]

\[\psi_X(x) \]

f(t)

\[k(t) \]

classical mechanics

quantum mechanics

reaction mechanism

statistical mechanics

a: number of particles

x: electronic coordinates

X: nuclear coordinates

t: time
II. Example Reaction: Chelate Ring Inversion

experimentally ΔE_a 62 kJ/mol from 1H NMR

H. Köpf, Angew. Chem. 83, 146-147, (1971)

$\Delta \nu$ between signals of H at the two C_5H_5-rings

approximate formula

coalescence temp. T_C (~ 20 °C)

M. Hesse, H. Meier, B. Zeeh
Spektroskopische Methoden in der organischen Chemie Thieme Verlag 1991
Stabilizing and destabilizing effects of folding

Lewis structure
III. Application of MO Theory

Ring opening and closing of ozone - A forbidden reaction
molecular plane σ preserved in the reaction
levels of MOs with different symmetry w. r. t. σ are crossing
computed* kinetic persistence of the cyclic isomer

life time of the intermediate

\[k = Ae^{-\frac{E_a}{RT}} \quad \text{Arrhenius equation} \]

\[\tau \sim \frac{1}{k} \]
unimolecular reaction

\[
\begin{align*}
\text{first-order rate law} & \quad \frac{dx}{dt} = k[c_0 - x] \\
\ln \frac{c_0}{c_0 - x} & = kt \\
x & = \frac{1}{2} c_0 \\
t & = \tau
\end{align*}
\]

half-life time \(\tau = \ln 2k^{-1} \)
Fill in numbers

assume preexponential factor of 10^{15}s^{-1} (unimolecular reaction)
calculated barrier 23 kcal/mol = 95.7 kJ/mol (the lower one)
room temperature 25ºC

$$k = A e^{-\frac{E_a}{R T}}$$

$$k = 10^{15} \text{s}^{-1} e^{-\frac{95.7 \text{kJmol}^{-1}}{8.31 \text{JK}^{-1}\text{mol}^{-1}298 \text{K}}}$$

$$k = 0.64 \cdot 10^{-2} \text{s}^{-1}$$

$$\tau = \ln 2 k^{-1}$$

$$\tau = 44 \text{ s}$$
Use cyclic ozone as a ligand

6 π electron donor
Some Predicted Complexes

applied an ‘18-electron strategy’

Woodward - Hoffmann Rules

to explain stereoselectivity of cycloadditions
different symmetry elements remain, depending on the mechanism

disrotatory antidomino antitrophic

conrotatory domino cistrophic
correlation diagram: level-crossing for disrotatory path

coefficients of Hückel solutions (π systems) correspond to particle-in-a-box solutions
A Conversation on VB vs MO Theory: A Never-Ending Rivalry?

ROALD HOFFMANN*
Department of Chemistry and Chemical Biology,
Cornell University, Baker Laboratory,
Ithaca, New York 14853-1301

SASON SHAIK*
Department of Organic Chemistry and
The Ilse Meitner-Minerva Center for Computational
Quantum Chemistry, Givat Ram Campus,
Jerusalem 91904, Israel

PHILIPPE C. HIBERTY*
Laboratoire de Chimie Physique, Groupe de
Chimie Théorique, Bât. 490, Université de Paris-Sud,
91405 Orsay Cédex, France

Received May 30, 2003

ABSTRACT
Quantum mechanics has provided chemistry with two general theories, valence bond (VB) theory and molecular orbital (MO) theory. The two theories were developed at about the same time.

SS: I still remember, Roald, when I was at the University of Washington, the Walker—Ames lectures. After inviting all the students to drink.

RH: I think I was experimenting for a while.

SS: ... I of course was too... enough to ask you about science. I think will be the major developmental chemistry in years to come. You said, VB theory would come back.

RH: Did I say that? I don’t remember.

SS: Yes, you did! As an aside, I was shocked — how could someone so busy come up with this? Blasphemy! After all, during my student time as a dead end. And lo and behold, a discovering VB theory with en in your lab, you were very kind of me, even though I had not researched you intended me to...
IV. Application of Quantum Chemistry

use Born-Oppenheimer approximation

$$\Psi_k(x, R) = \Psi_n^{(el)}(x, R) \chi_{v,J,...}^{(n)}(R) , \quad k \equiv \{n, v, J \ldots\}$$

and solve the electronic Schrödinger equation (for fixed R)

$$\hat{H}_{el}\Psi_n^{(el)}(x, R) = E_n(R)\Psi_n^{el}(x, R)$$
ideally: determine electronic properties as functions of nuclear coordinates - i.e. determine the PES

Potential Energy Surface, PES:

• governs nuclear motion, forces on the nuclei $F_x = -\partial E/\partial x$

• stationary points correspond to (meta)stable species (local or global minima) and to transition states (saddle points)

• shape of PES around stationary points determines vibrational spectra

• electronic transitions correspond to transitions from one PES to another

• minimum energy path corresponds to reaction coordinate
in reality: Calculated PES only available for very small systems, for example H+H$_2$ in colinear arrangement

without Coulomb interactions
H. Eyring, M. Polanyi, 1931

with Coulomb interactions
M. Karplus et al. 1968
in practice: stationary points of PES, their characterization (frequency calculations), and maybe the reaction path (IRC calculation)
Transition State Theory

Eyring equation

\[k = \frac{k_b T Q^{TS}}{h \frac{Q^R}{Q^R}} e^{-\frac{E_a}{k_b T}} \]

partition function

\[Q = \sum_{\text{levels}} g_j e^{-\frac{\varepsilon_j}{k_b T}} \]

\[\varepsilon_{vib} = \left(n + \frac{1}{2} \right) h \nu \]
Example: Study of a Radical Clock Rearrangement on a Surface

FTIR: ring modes at 1393 cm\(^{-1}\) and 1434 cm\(^{-1}\) vanish and C=C stretch mode emerges at 1645 cm\(^{-1}\)

Cyclopropylmethoxide and 3-butenyloxide on Mo(110)

$$\Delta E_{\text{total}} = 31 \text{ kJ/mol}$$
Alternative mechanisms already for the isolated molecule
Which is the rate-determining step?

... the one with the highest activation energy (not the one with the highest barrier)

V. Molecular Dynamics

nuclei have kinetic energy \(T_K > 0 \)

\[
\mathbf{H} = T_K + \mathbf{U} \\
T_K = \frac{1}{2} \sum P_I^2 / M_I
\]

\(U: T_e(\mathbf{r}) + V_{ek}(\mathbf{r}, \mathbf{R}) + V_{ee}(\mathbf{r}) + V_{KK}(\mathbf{R}) \)

\(P_I: \) classical momentum

classical equations of motion

\[
\dot{\mathbf{R}_I} = \frac{\partial \mathbf{H}}{\partial \mathbf{P}_I} \\
\dot{\mathbf{P}_I} = -\frac{\partial \mathbf{H}}{\partial \mathbf{R}_I}
\]

solutions \(\mathbf{R}_I(t) \) and \(\mathbf{P}_I(t) \) are the trajectories of the nuclei
VI. Wave-Packet Dynamics

treat also the nuclei quantum-mechanically

\[
H \Phi(R,t) = i\hbar \frac{\partial}{\partial t} \Phi(R,t)
\]

\[
H = T_K + U + [H_{\text{extern}}]
\]

\[
T_K = \frac{\hbar^2}{2} \sum \frac{\nabla^2}{M_I}
\]

simulations only for intervals of a few picoseconds

very fast reactions: e.g. laser-induced isomerizations
Ultrafast cis-trans photoswitching: A model study

Susanne Hahn and Gerhard Stocka)

Institute of Physical and Theoretical Chemistry, J. W. Goethe University, Marie-Curie-Str. 11, D-60439 Frankfurt, Germany

\[\varphi \]

\[\lambda_c \]

\[\lambda_t \]

\[\text{trans} \]

\[\text{cis} \]

\[0 \quad \pi/2 \quad \pi \quad 3\pi/2 \varphi \]

\[\text{population} \]

\[\text{time [ps]} \]
References/Acknowledgement

• C. Engler (Uni Leipzig) Überblick über die Näherungshierarchie und Lösungsansätze in der Quantentheorie, Graduate Course

• H.-J. Werner (Uni Stuttgart) Computational Chemistry in Catalysis, Graduate Course

• R. Hoffmann (Cornell) Bonding in Molecules, CHEM798

Tatsächlich ist der Fortschritt der Naturwissenschaften wie ein alter Wüstenpfad übersät mit den ausgebleichten Gerippen fallen-gelassener Theorien, die einstmals ewiges Leben zu besitzen schienen.

Arthur Koestler