Water on Metal Oxide Surfaces

$\text{H}_2\text{O}/\text{ZnO}(10\overline{1}0)$

Ulrike Diebold
Department of Physics, Tulane University
New Orleans, U.S.A.

Experiments (Tulane):
Olga Dulub

Theory:
Bernd Meyer (Bochum, now U. Erlangen-Nürnberg, Germany)

Funded by NSF-CHE, NASA, PRF, DoE
Water adsorption at oxide surfaces:

- H-bonding between H$_2$O and H$_2$O
- H-bonding between H$_2$O and O$_{\text{surface}}$
- very dynamical system

ZnO (10\overline{1}0)
ZnO:

Wurtzite Structure
Tetrahedral Coordination
Hexagonal Packing (AbaBAb..)

Cutting perpendicular to c-Ache ('basal plane') gives two very different surfaces:

- Zn-terminated (0001) Surface
- O-terminated (0001) Surface

→ "polare" surfaces

'mixed terminated' (non-polar) surfaces (1010), (1120)

ZnO Samples:

- High exciton binding energy, ~60meV
- Wide bandgap semiconductor, ~3.3 eV

Sn-doped

Prism face

Zn- side

polar (0001)-Zn and (0001)-O surfaces;
non-polar (1010) and (1120) surfaces
Clean ZnO(1010):
(wurtzite structure)

Zn-O dimers:

STM (experimental)

STM (calculated)

ZnO (1010)
Clean ZnO(10\bar{1}0):

empty-states STM
(sputtered & annealed, 970 K)

300 Å x 300 Å, V_{sample} = +1.5 V, 3.6 nA

Not a reducible material
no point defects visible
two kinds of defects:

full layer deep holes and half layer deep holes

Water/ZnO(10\bar{1}0):
(2x1) overlayer

Helium Atom Scattering
(Helium Atom Scattering)

LEED
T = 300 K

Water/ZnO(10\{1\}0): calculations
(B. Meyer)

DFT:
- gradient-corrected PBE functional
- Vanderbilt ultrasoft pseudopotentials
- plane wave cutoff 25 Ryd (tests with 30 Ryd)
- periodic slabs, 6 to 8 ZnO layers
- dipole correction to suppress artificial interactions between the slabs
- (6x4x1) Monkhorst-Pack k-point mesh
- Full atomic relaxations of all configurations
- tested with coupled cluster-type calculations

Isolated water molecule:

0.94 eV

Full Monolayer:

1.03 eV

'key-lock' configuration

Water/ZnO(10\{1\}0): calculations
(B. Meyer)

Car-Parrinello Molecular Dynamics:
- some of the water molecules dissociate
- partially dissociated structure remains stable

Isolated water molecule:

Full Monolayer: half-dissociated

1.13 eV

Second water molecule triggers dissociation:
Water/ZnO(10\(\bar{1}\)0): (2x1) overlayer

STM (empty states)

- many small domains, narrow
- weak coupling between neighboring rows
- domain boundaries not 2\(\times\)1
Water/ZnO(10\overline{1}0):

STM (room temperature)

- For a full ML of water, domains with a (1x1) structure are observed (ca. 10%) in addition to (2x1)

- Another structure with (2x1) periodicity, but a much smaller corrugation appears as well (?)!

high mobility around defects
Water/ZnO(10\bar{1}0): STM (room temperature)

- For a full ML of water, domains with a (1x1) structure are observed (ca. 10%) in addition to (2x1)
- Another structure with (2x1) periodicity, but a much smaller corrugation
Water/ZnO(10\bar{1}0):
STM (room temperature)

- For a full ML of water, domains with a (1x1) structure are observed (ca. 10%) in addition to (2x1)
- Another structure with (2x1) periodicity, but a much smaller corrugation

1.

Water/ZnO(10\bar{1}0):
STM (room temperature)

- For a full ML of water, domains with a (1x1) structure are observed (ca. 10%) in addition to (2x1)
- Another structure with (2x1) periodicity, but a much smaller corrugation

2.
Water/ZnO(10\overline{1}0):

STM (room temperature)

- For a full ML of water, domains with a (1x1) structure are observed (ca. 10%) in addition to (2x1)
- Another structure with (2x1) periodicity, but a much smaller corrugation

The 'intermediate' structure: hypothesis

- small energy difference, small barrier
- water overlayer constantly dissociates/associates at room temperature
- potentially triggered by loosely bound water/H at the defects
- 'intermediate' structure in STM is time average between two energy minima

Molecular (1x1)

Half-dissociated (2x1)

\[kT = 26 \text{ meV} \]
MD calculations, simulated STM images
(B. Meyer)

24 of 41
Water adsorption at the ZnO(10\bar{1}0) surface:

- Water forms a very stable 2x1 overlayer
- Strong attractive interaction - 2 dim clustering
- Half the water molecules are dissociated (mediated by water-water interaction)
- Fully molecular layer almost degenerate in energy
- Water is loosely bound around observable defects
- The overlayer appears to be quite dynamic in STM - dissociation/association at RT, induced by H from defects?