Polyalanine: Infinite periodic structure prototypes

Textbook (bio-)chemistry (Corey/Pauling 1951, others)
... will accompany us as benchmark systems in this talk
All-electron electronic structure theory - scope

Wishlist for electronic structure theory:

- First- / second-row elements
- 3d transition metals (magnetism)
- 4d / 5d transition metals (incl. relativity)
- f-electron chemistry
- periodic and cluster systems on equal footing
- all-electron

... and all this in an accurate, efficient computational framework!

The Kohn-Sham Equations

\[\left[-\frac{\nabla^2}{2} + v_{\text{ext}}(r) + v_{\text{es}}(r) + v_{\text{xc}}(r) \right] \psi_k(r) = \epsilon_k \psi_k(r) \]

“As (almost) everyone does”:

1. Pick basis set \(\{ |\varphi_i\rangle \} \):
 \[\psi_k(r) = \sum_i c_{ki} |\varphi_i\rangle \]
 \(\rightarrow \) generalized eigenvalue problem:
 \[\hbar^2 c_k = \epsilon_k \sum_i c_{ki} \]
 \[h_{ij} = \langle \varphi_i | \hat{h}_{\text{KS}} | \varphi_j \rangle \]
 \[s_{ij} = \langle \varphi_i | \varphi_j \rangle \]

2. Self-consistency:
 Initial guess: e.g., \(c_{ki}^{(0)} \)
 Update density \(n^{(m)}(r) \)
 Update \(v_{\text{es}}^{(m)}, v_{\text{xc}}^{(m)} \)
 \[h_{ij}^{(m)} = \int d^3r \varphi_i(r) \hat{h}_{\text{KS}}^{(m)} \varphi_j(r) \]
 Solve for updated \(c_{ki}^{(m+1)} \)

R. Gehrke
Tue 11:30h
Electronic Structure Basis Sets

\[\psi_k(r) = \sum_i c_{ki} \varphi_i(r) \]

... impacts all further algorithms (efficiency, accuracy)

Many good options:

- **Plane waves**
 \[\varphi_k(r) = \frac{1}{N} e^{ikr} \]

 → efficient FFT’s (density, electrostatics, XC-LDA/GGA)

 → inherently periodic

 → not all-electron (*Slater 1937*) - need “pseudoization”

- **Augmented plane waves** (*Slater 1937; Andersen 1975; etc.*)

- **Gaussian-type orbitals**
 \[\varphi_i(r) = \frac{1}{N} r^l e^{-\alpha r^2} \]

- **Many others**: (L)MTO, grid-based, numeric atom-centered functions, ...

Our choice [FHI-aims\(^1\)]: Numeric atom-centered basis functions

\[\varphi_{i[lm]}(r) = \frac{u_i(r)}{r} \cdot Y_{lm}(\Omega) \]

- \(u_i(r) \): Flexible choice - “Anything you like”

- **Free-atom like**: \(v_i(r) = v_{\text{free atom}}^{\text{DFT}}(r) \)

- **Hydrogen-like**: \(v_i(r) = z/r \)

- **Free ions, harm. osc. (Gaussians)**, ...

\(^1\)The Fritz-Haber-Institute *ab initio molecular simulations* package

V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler,

Computer Physics Communications (2009) accepted

http://www.fhi-berlin.mpg.de/aims/
Our choice [FHI-aims1]: Numeric atom-centered basis functions

\[\varphi_{i,m}(r) = \frac{u_i(r)}{r} \cdot Y_{lm}(\Omega) \]

“LAPW-like accuracy and reliability - plane wave pseudopotential-like speed”

- All-electron
- Periodic, cluster systems on equal footing
- good scaling (system size & CPUs)
- Hybrid functionals, Hartree-Fock, MP2, RPA
- Quasiparticle self-energies: GW, MP2, ...

... but which particular basis functions should we use?

1) The Fritz-Haber-Institute ab initio molecular simulations package
V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler,
Computer Physics Communications (2009) accepted
http://www.fhi-berlin.mpg.de/aims/

Find accurate, transferable NAO basis sets

Goal: Element-dependent, transferable basis sets
from fast qualitative to meV-converged total energy accuracy (ground-state DFT)

Can’t we have the computer pick
find basis sets for us?

Robust iterative selection strategy:
(e.g., Delley 1990)

Initial basis \{u\}^{(0)}:
Occupied free atom orbitals \(u_{\text{free}}\)

Search large pool of candidates \{u_{\text{trial}}(r)\}:
Find \(u_{\text{opt}}^{(n)}\) to minimize
\[E^{(n)} = E[\{u\}^{(n-1)} \oplus u_{\text{trial}}] \]

\[\{u\}^{(n)} = \{u\}^{(n-1)} \oplus u_{\text{opt}}^{(n)} \]

until \(E^{(n-1)} - E^{(n)} < \text{threshold}\)
Iterative selection of NAO basis functions

"Pool" of trial basis functions:
- 2+ ionic \(u(r)\)
- Hydrogen-like \(u(r)\) for \(z=0.1-20\)

Optimization target:
- Non-selfconsistent symmetric dimers, averaged for different \(d\)

Pick basis functions one by one, up to complete total energy convergence

Results: Hierarchical Basis Sets for All Elements

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>C</th>
<th>O</th>
<th>Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimal</td>
<td>(1s)</td>
<td>[He](+2s2p)</td>
<td>[He](+2s2p)</td>
<td>[Xe](+6s5d4f)</td>
</tr>
<tr>
<td>Tier 1</td>
<td>H(2s,2.1)</td>
<td>H(2p,1.7)</td>
<td>H(2p,1.8)</td>
<td>Au(^{2+}) (6p)</td>
</tr>
<tr>
<td></td>
<td>H(2p,3.5)</td>
<td>H(3d,6.0)</td>
<td>H(3d,7.6)</td>
<td>H(4f,7.4)</td>
</tr>
<tr>
<td></td>
<td>H(2s,4.9)</td>
<td>H(3s,6.4)</td>
<td>H(4f(^{2+}) (6s)</td>
<td>H(5g,10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>H(6h,12.8)</td>
<td>H(3d,2.5)</td>
</tr>
<tr>
<td>Tier 2</td>
<td>H(1s,0.85)</td>
<td>H(4f,9.8)</td>
<td>H(4f,11.6)</td>
<td>H(5f,14.8)</td>
</tr>
<tr>
<td></td>
<td>H(2p,3.7)</td>
<td>H(3p,5.2)</td>
<td>H(3p,6.2)</td>
<td>H(4d,3.9)</td>
</tr>
<tr>
<td></td>
<td>H(2s,1.2)</td>
<td>H(3s,4.3)</td>
<td>H(3d,5.6)</td>
<td>H(3p,3.3)</td>
</tr>
<tr>
<td></td>
<td>H(3d,7.0)</td>
<td>H(5g,14.4)</td>
<td>H(5g,17.6)</td>
<td>H(1s,0.45)</td>
</tr>
<tr>
<td></td>
<td>H(3d,6.2)</td>
<td>H(1s,0.75)</td>
<td>H(5g,16.4)</td>
<td>H(6h,13.6)</td>
</tr>
<tr>
<td>Tier 3</td>
<td>H(4f,11.2)</td>
<td>H(2p,5.6)</td>
<td>O(^{2+}) (2p)</td>
<td>H(4f,5.2)*</td>
</tr>
<tr>
<td></td>
<td>H(3p,4.8)</td>
<td>H(2s,1.4)</td>
<td>H(4f,10.8)</td>
<td>H(4d,5.0)</td>
</tr>
</tbody>
</table>

Systematic hierarchy of basis (sub)sets

- "First tier"
- "Second tier"
- "Third tier"
Transferability: \((\text{H}_2\text{O})_2\) hydrogen bond energy

\[\leftrightarrow 2 \quad (\quad) \]

(a) PBE

\[
\text{H}_2\text{O}-\text{H}_2\text{O} \text{ binding energy [eV]}
\]

\[
\begin{array}{c|c|c|c|c|c|c}
\text{H}_2\text{O}-\text{H}_2\text{O} & \text{binding energy} & \text{Basis size} \\
\hline
\text{minimal} & -0.5 & 0 \\
\text{tier 1} & -0.4 & 100 \\
\text{tier 2} & -0.3 & 200 \\
\text{tier 3} & -0.2 & 300 \\
\end{array}
\]

Basis set limit (independent):
\[E_{\text{Hb}} = -219.8 \text{ meV} \]

But how about “Basis Set Superposition Errors”?

Traditional quantum chemistry: “Basis set superposition errors”

- e.g.: Binding energy \(E_b = E(\quad) - 2E(\quad) \)

Problem:
- \(\bullet \) has larger basis set than \(\bullet \).
- Distance-dependent overbinding!

Remedy: “Counterpoise correction”

\[\Delta E_{\text{BSSE}} = E(\quad) - E(\quad) \]

No nucleus - basis functions only

NAO basis sets: \(\bullet \) is already exact \(\Rightarrow \) no BSSE for \(\bullet \).
But how about molecular BSSE?
Ground-state energetics, NAO’s:
BSSE not the most critical basis convergence error (e.g., tier 2)

Using Numeric Atom-Centered Basis Functions: Pieces

- **Numerical Integration**
 \[h_{ij} = \int d^3r \varphi_i(r) \hat{h}_{\text{KS}} \varphi_j(r) \]

- **Electron density update**
 \[n(r) = \sum_k f_k |\psi_k(r)|^2 \]

- **All-electron electrostatics**
 \[v_{\text{es}}(r) = \int d^3r' \frac{n(r')}{|r - r'|} \]

- **Eigenvalue solver**
 \[\hbar c_k = \epsilon_k s c_k \]

- **Relativity?**
 needed for heavy elements

- **Periodic systems?**
 need suitable basis, electrostatics
Numeric Atom-Centered Basis Functions: Integration

\[h_{ij} = \int d^3 r \varphi_i(r) \hat{h}_{KS} \varphi_j(r) \]

- **Discretize to integration grid:** \[\int d^3 r f(r) \rightarrow \sum_r w(r) f(r) \]

... but even-spaced integration grids are out: \(f(r) \) has peaks, wiggles near all nuclei!

- **Overlapping atom-centered integration grids:**
 - Radial shells (e.g., H, light: 24; Au, tight: 147)
 - Specific angular point distribution ("Lebedev")
 exact up to given integration order \(l \)
 (50, 110, 194, 302, ... points per shell)

Pioneered by
Becke JCP 88, 2547 (1988), Delley, JCP 92, 508 (1990), MANY others!

Integrals: “Partitioning of Unity”

\[h_{ij} = \int d^3 r \varphi_i(r) \hat{h}_{KS} \varphi_j(r) \]

- **Rewrite to atom-centered integrands:**
 \[\int d^3 r f(r) = \sum_{\text{atoms}} \int d^3 r p_{\text{atom}}(r) f(r) \]

 exact: \[\sum_{\text{atoms}} p_{\text{atom}}(r) = 1 \]

 through \[p_{\text{atom}}(r) = \frac{g_{\text{atom}}(r)}{\sum_{\text{atom}} g_{\text{atom}}(r)} \]

- **e.g.** \[g_{\text{atom}} = \frac{\rho_{\text{atom}}(r)}{r^2} \] (Delley 1990)

many alternatives:
Becke 1988, Stratmann 1996, Koepernik 1999, ...
Integrals in practice: Any problem?

Fully extended Polyalanine Ala_{20}, DFT-PBE (203 atoms!)

Integration error

Integration points per radial shell

Hartree potential (electrostatics): Same trick

\[v_{es}(\vec{r}) = \int d^3r' \frac{n(\vec{r}')}{|\vec{r} - \vec{r}'|} \]

- Partitioning of Unity:
 \[n(\vec{r}) = \sum_{\text{atoms}} p_{\text{atom}}(\vec{r}) n(\vec{r}) \]

- Multipole expansion:
 \[n_{\text{atom},lm}(\vec{r}) = \int_{s=|\vec{r}' - \vec{R}_{\text{atom}}|} p_{\text{atom}}(\vec{r}') n(\vec{r}') Y_{lm}(\Omega) \]

- Classical electrostatics:
 \[v_{es}(\vec{r}) = \sum_{\text{atoms}} \sum_{lm} v_{\text{atom},lm}(|\vec{r} - \vec{R}_{\text{atom}}|) Y_{lm}(\Omega_{\text{atom}}) \]

 e.g., Delley, JCP 92, 508 (1990)
Electrostatics: Multipole expansion

\[v_{es}(\mathbf{r}) = \sum_{\text{atoms}} \sum_{lm} v_{\text{atom},lm}(|\mathbf{r} - \mathbf{R}_{\text{atom}}|) Y_{lm}(\Omega_{\text{atom}}) \]

Polyalanine Ala\textsubscript{20}, DFT-PBE (203 atoms!)
\[\alpha \text{-helical vs. extended: Total energy convergence with } l_{\text{max}} \]

Periodic systems

- Formally: Bloch-like basis functions
 \[\chi_{i,k} = \sum_{N} \exp[ikT(N)]\varphi_{i}[\mathbf{r} - \mathbf{R}_{\text{atom}} + T(N)] \]
 \(k \): “Crystal momentum” = Quantum number in per. systems

- Long-range Hartree potential: Ewald’s method (1921)
 \[v_{\text{atom},lm}(\mathbf{r}) \rightarrow v_{\text{atom},lm}(\mathbf{r}) - v_{\text{Gauss}}^{\text{atom},lm}(\mathbf{r}) + \sum_{G} e^{iGr} \text{FT}[v_{\text{Gauss}}^{\text{G}}] \]
 short-ranged real-space part - \(O(N) \)

- e.g., Saunders et al. 1992; Birkenheuer 1994; Delley 1996; Koepernik 1999; Trickey 2004; etc.

see P. Kratzer
Wed. 9:00
... but how does it all scale?

Fully extended Polyalanine, “light”

![Graph showing time per S.C.F. iteration vs. Atoms in structure.](image)

<table>
<thead>
<tr>
<th>Basis</th>
<th>tier 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{Hartree}</td>
<td>4</td>
</tr>
<tr>
<td>radial shells</td>
<td>24-36</td>
</tr>
<tr>
<td>pts. per shell</td>
<td>194 max.</td>
</tr>
<tr>
<td>Cutoff width</td>
<td>5Å</td>
</tr>
</tbody>
</table>

see V. Havu
Tue 9:00
... but how does it all scale?

Fully extended Polyalanine, “light”

![Graph showing time per s.c.f. iteration vs. atoms in structure.](image)

- **Basis**: tier 1
- **\(\hbar \text{hartree} \)**: 4
- **Radial shells**: 24-36
- **Pts. per shell**: 194 max.
- **Cutoff width**: 5Å

see V. Havu
Tue 9:00

\(\alpha \)-helical Polyalanine, “tight”

- **Basis**: tier 1, tier 2
- **\(\hbar \text{hartree} \)**: 4, 6
- **Radial shells**: 24-36, 49-73
- **Pts. per shell**: 194 max., 434 max.
- **Cutoff width**: 5Å, 6Å

Conventional eigensolver - (Sca)Lapack

- Robust!
- Compact basis sets: Small matrices
- **but** O\((N^3)\) scaling - relevant ≈ 100s of atoms
- 1000s of CPUs: Scaling bottleneck?

see V. Havu
Tue 9:00
Towards the “petaflop”: Tackling the eigenvalue solver

IBM BlueGene (MPG, Garching)
16384 CPU cores, #9 on Green500

Total time/s.c.f. iteration
(ScaLapack-based)

Eigenvalue solver
(ScaLapack, DC)
Matrix dim.: 27000

Going (massively) parallel: Towards the “petaflop”

DC eigenvalue solver, 1st step: straight, optimized rewrite!
There is some life left in “conventional” solvers yet!

Ongoing work: with R. Johanni (RZG), Ville Havu (Helsinki), BMBF project "ELPA"
Relativity

Non-relativistic QM: Schrödinger Equation

\[V\phi + \frac{\mathbf{p}^2}{2m} \phi = \epsilon \phi \]

- one component
 (two with spin)
- one Hamiltonian for all states

Relativistic QM: Dirac Equation

\[
\begin{pmatrix}
V \\
\sigma \cdot \mathbf{p} + c^2 - 2c^2 + V
\end{pmatrix}
\begin{pmatrix}
\phi \\
\chi
\end{pmatrix}
= \epsilon
\begin{pmatrix}
\phi \\
\chi
\end{pmatrix}
\]

- \(\epsilon\)-dependent Hamiltonian
- Not negligible for \(\epsilon - V(r) \approx 2c^2\)
- \(\epsilon\) affects near-nuclear part of any wave function

Implementing scalar relativity

\[V\phi + \frac{\mathbf{p}^2}{2c^2} \phi = \epsilon \phi \]

ZORA in practice: Harsh approximation (known)

1. LAPW, others: Outright treatment
 \(\rightarrow\) radial functions in atomic sphere (core, valence): Per-state relativistic
 \(\rightarrow\) 3-dimensional non-relativistic treatment of interstitial regions

Tricky with NAO’s: Basis functions from different atomic centers overlap!

2. Approximate one-Hamiltonian treatment
 Popular: Zero-order regular approximation (ZORA) [1]

Fixing ZORA

1. “Atomic ZORA”
 - No gauge-invariance problem
 - Simple total-energy gradients

2. Scaled ZORA
 - Formally exact for H-like systems
 - Perturbative, based on ZORA

E. van Lenthe et al., JCP 101, 9783 (1994).

Atomic ZORA + scaled ZORA: A viable strategy

Viable strategy:
- Geometry optimization: atomic ZORA (simple gradients)
- (Final) total energies, eigenvalues: scaled ZORA
Outlook: Beyond scaled ZORA with NAO’s

\[V\phi + \frac{\mathbf{p}^2 c^2}{2} + V\mathbf{p} \phi = \epsilon \phi \]

Koelling-Harmon relativistic energies for NAO’s:

1. Deep core states (non-overlapping): **On-site basis functions only** (no shape restriction!)
2. Numerically stable per-state core kinetic energy:
3. Remaining states: **scaled ZORA**

<table>
<thead>
<tr>
<th>Au atom, LDA: (E_{\text{tot}}) [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>sc. ZORA.</td>
</tr>
<tr>
<td>- 517,036.15</td>
</tr>
<tr>
<td>+ KH (1s)</td>
</tr>
<tr>
<td>- 517,048.70</td>
</tr>
<tr>
<td>+ KH (2s,2p)</td>
</tr>
<tr>
<td>- 517,052.81</td>
</tr>
<tr>
<td>+ KH (3s,3p,3d)</td>
</tr>
<tr>
<td>- 517,053.42</td>
</tr>
<tr>
<td>+KH (4s,4p,4d)</td>
</tr>
<tr>
<td>- 517,053.44</td>
</tr>
<tr>
<td>full KH</td>
</tr>
<tr>
<td>- 517,053.45</td>
</tr>
</tbody>
</table>

Koelling-Harmon scalar relativity with NAOs: \(\text{Au}_2 \)

Stable physical results for increasingly “correct” core - yet now
- correct (KH) total energies
- correct (KH) core eigenvalues, Kohn-Sham wave fns., densities
- path to further improvements (small component; Dirac core; ...)

Au dimer - LDA

<table>
<thead>
<tr>
<th>Binding energy [eV]</th>
<th>Binding distance [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>2.6</td>
</tr>
<tr>
<td>4.5</td>
<td>2.8</td>
</tr>
<tr>
<td>4.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

LAPW

scaled ZORA

Koelling-Harmon: 1s

Koelling-Harmon: 4s,4p,4d
Summary

Density functional theory and beyond with FHI-aims:
Versatile all-electron framework across the periodic table

Compact, hierarchical, transferable basis sets
“fast qualitative” up to meV accuracy (ground-state DFT)

Proven real-space algorithms
efficient, but always verifiable accuracy

Ongoing - “DFT and beyond” with FHI-aims

Large (bio)molecules & clusters
Forces, scf stability:
R. Gehrke (K. Reuter)
Vibrations, MD, IR spectra:
F. Hanke, M. Rossi, L. Ghiringhelli

Numerical efficiency
Localization & parallelization: V. Havu
Eigenvalue solvers:
V. Havu, R. Johanni

Periodic systems & heavy elements
Energy and forces, relativity:
P. Havu

“Computational spectroscopy”:
GW & MP2 self-energies:
X. Ren (P. Rinke)
STM: S. Levchenko
Core levels (XAS):
M. Gramzow (K. Reuter)

FHI-aims
Core concepts and strategy
V. Blum & M. Scheffler

“Beyond DFT”:
Resolution of Identity:
X. Ren (P. Rinke)
MP2: A. Sanfilippo (K. Reuter)
RPA: X. Ren (P. Rinke)
Hybrid XC: S. Gutzeit, M. Rossi
van der Waals: A. Tkatchenko, M. Yoon