Kinetic Monte Carlo: Coarse-graining Time and Space

Peter Kratzer
Faculty of Physics,
University Duisburg-Essen,
Germany
Time and length scales

2D islands

morbology

surface reconstruction

GaAs
Methods of Statistical Physics
Discrete models in Statistical Physics

- Ising model (magnetism)

\[H(s) = -J_q \sum_i \sum_{j \in n(i)} s_i s_j - \mu_B B \sum_i s_i \]

- Lattice-gas interpretation

\[c_1 = 0, 1 \quad s_i = 2c_i - 1 \]

\[H = -4J_q \sum_i \sum_{j \in n(i)} c_i c_j + 2(qJ_q - \mu_B B) \sum_i c_i - N(qJ_q - \mu_B B) \]

- Goal:
 Calculation of thermal averages
A discrete model for epitaxy: solid-on-solid (SOS) model

- Atoms are symbolized by little cubes placed on a lattice.
- The growth surface has no voids, no “overhangs”.
- Atoms move by discrete hops with rate $\Gamma = \exp(-E/kT)$.
- The binding energy is determined by the # of neighbors n
 $$E = E_D + nE_B$$
Stochastic sampling

- Calculating thermal averages in many-particles systems requires evaluation of high-dimensional integrals.
- Choosing the sampling points in an (almost) random way is a good strategy, in particular in high dimensions!
- Even better: importance sampling -- density of sampling points proportional to local value of the integrand
- Idea: create a stochastic process that achieves importance sampling.

\[\pi/4 = 0.78 \ldots \approx 20/25 = 0.8 \]
Metropolis Sampling

- **Solution:** *Importance Sampling* with

\[w(q) = \frac{\exp(-V(q)/(k_B T))}{Z'} \]

- Generate random support points, distributed according to \(w(q) \), i.e., out of total \(K \) points, \(k_i = K w(q) \) in the unit volume around \(q_i \).

- The expectation value of an observable is calculated as

\[\langle A \rangle \approx \frac{1}{K} \sum_{i=1}^{K} k_i A(q_i) \]

- The Metropolis algorithm generates, starting from \(q_0 \), successively a sequence of \(K \) configurations \(q_i \), distributed according to \(w(q) \).

- Even though we don’t know \(Z' \), this is possible, because it is just the correct relative probabilities that matter:

 - accept new config. \(q_{i+1} \), if

 \[\exp \left(-\frac{V(q_{i+1}) - V(q_i)}{k_B T} \right) > \text{rnd} \]

 - else reject.

- This assures that

\[\frac{w(q_{i+1})}{w(q_i)} = \exp \left(-\frac{V(q_{i+1}) - V(q_i)}{k_B T} \right) \]
Metropolis algorithm

arbitrary start configuration

config. is modified → test config.

$E_{\text{test}} < E_i$?

$\frac{\exp(- (E_{\text{test}} - E_i)/k_B T)}{x} > x$?

After “warm up” ($i > 1000$), add the value of observable A in config. $i+1$ to the cumulated average

yes

no
From MC to kMC: the N-fold way
Classification of spins according to their neighborhood

<table>
<thead>
<tr>
<th>class</th>
<th>central spin</th>
<th>neighbors</th>
<th>class members n_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>↑</td>
<td>↑,↑</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>↑</td>
<td>↑,↓</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>↑</td>
<td>↓,↓</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>↓</td>
<td>↓,↓</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>↓</td>
<td>↑,↓</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>↓</td>
<td>↑,↑</td>
<td>3</td>
</tr>
</tbody>
</table>
The N-fold way algorithm in MC

- processes are chosen with a probability proportional to their rates
- no discarded attempts (in contrast to Metropolis)

<table>
<thead>
<tr>
<th>class</th>
<th>central spin</th>
<th>neighbors</th>
<th>class members n_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>↑</td>
<td>↑,↑</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>↑</td>
<td>↑,↓</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>↑</td>
<td>↓,↓</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>↓</td>
<td>↓,↓</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>↓</td>
<td>↑,↓</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>↓</td>
<td>↑,↑</td>
<td>3</td>
</tr>
</tbody>
</table>
Simulations of non-equilibrium processes: kinetic MC

- While being aware of all processes possible at an instant of time, we need a way of (randomly) selecting one process with the appropriate relative probability.
- An internal clock keeps track of the advancement of physical time.
 - If the processes are clearly separated in time, i.e. processes are uncorrelated on the time scale during which the processes takes place, the waiting time for each individual process has Poissonian distribution. (K. A. Fichthorn and W.H. Weinberg, J. Chem. Phys. 95, 1090 (1991))
- We need to update the list of all possible processes according to the new situation after the move.

Specific algorithms:
- process-type list algorithm
- binary-tree algorithm
- time-ordered-list algorithm
Application to a lattice-gas model

• example: lattice $L_x \times L_y$

• fool's algorithm: first select one particle, then select one move of that particle

• the correct solution: cumulated partial rates

$$r_k = \sum_{i=1}^{k} \Gamma_i$$

normalized to the total rate $R=r_N$

• selection process: draw a random number ρ and compare it to all the r_k/R sequentially; as soon as ρ exceeds r_k/R, execute process k

• problem: we need to compare ρ to many (in the worst case all) of the r_k/R

• note: Selecting a process with the right probability requires that we can enumerate all N processes.
For p process types, we need to compare only to the p numbers $N^{(k)} \Gamma^{(k)}$, $k=1, p$, rather than to all r_k/R (which are much more numerous).
determine all possible processes for a given configuration of your system and build a list

calculate total rate $R = \sum_k N(k) \Gamma(k)$

ρ_1, ρ_2, ρ_3 random numbers $\in [0,1[$

find class # k such that

$$\sum_{j=0}^{k-1} N(j) \Gamma(j) \geq \rho_1 \sum_{j=0}^{k-1} N(j) \Gamma(j)$$

execute process number $\lfloor \rho_2 N(k) \rfloor$ from class # k

update clock $t \rightarrow t - \ln(\rho_3)/R$

delete now obsolete processes from the process list
From molecular dynamics to kinetic Monte Carlo
From molecular dynamics to kinetic Monte Carlo

Conceptually, the system must be divided into the motion along the reaction coordinate and a “heat bath”.

rate theory \rightarrow lattice approximation

E_b
Transition State Theory (1-dim)

- Kramer's rate theory

\[\Gamma = \frac{\lambda}{\omega_b} \left(\frac{\omega_0}{2\pi} \exp\left(- \frac{E_b}{kT} \right) \right) \]

\[\lambda = \left(\frac{\gamma^2}{4} + \omega_b^2 \right)^{1/2} - \frac{\gamma}{2} \]

\(\gamma \): friction due to coupling to the heat bath

- high-friction limit

\[\Gamma = \frac{\omega_0 \omega_b}{2\pi \gamma} \exp\left(- \frac{E_b}{kT} \right) \]

- 'medium' friction \(\rightarrow \) transition state theory

\[\Gamma = \frac{\omega_0}{2\pi} \exp\left(- \frac{E_b}{kT} \right) \]

P. Hänggi, P. Talkner & M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)
From the PES to rate constants Γ
(multi-dimensional)

idea:
associate minima with the nodes, hops with the interconnects in a network

hopping rates derived from the PES
\[E(x_i, y_i) = \min E_{tot}(x_i, y_i, z_i, c_\alpha) \]

\[Z_{TS}/Z_i = \frac{\Gamma \text{ (harmonic \& classical approximation)}}{\prod_{N} \nu_{k,i}/\prod_{N-1} \nu_{k,TS} \exp(-\Delta E/kT)} \]
Temperature-accelerated dynamics (TAD)

Event is observed at T_{high}, but its rate is extrapolated to T_{low} (using the TST rate law).

TAD: Collective processes

F. Montalenti, M.R. Sørensen and A.F. Voter,
Application I:

GaAs nanowire growth
Molecular beam epitaxy of III-V semiconductors

Processes:

1) adsorption of As$_2$
2) dissociation of As$_2$
3) diffusion of As
4) desorption of As$_2$
5) adsorption of Ga
6) diffusion of Ga
7) desorption of Ga
8) island nucleation
9) growth

What is the interplay of these processes for a given temperature and flux?
Gold-catalysed nanowire growth

- much higher growth speed in a particular crystallographic direction [GaAs(111)B] compared to extended substrate
- liquid Au droplet used to store Ga (as Au-Ga alloy), but inefficient for As species
- role of material transport along the wire side walls?
Polytypism in GaAs nanowires

- segments of zincblende (ZB, which is the ground state in bulk) and wurtzite (WZ) crystal structure, depending on growth conditions

2 types of structurally different facets!
Arsenic supply to the interface

- arsenic vacancy emission into the solid
 \[D_{V_{\text{As}}}(T) = \Gamma_0 \exp \left(-\frac{\Delta E}{k_B T} \right) \]

 element-specific XEDS analysis

 or

- diffusion of As dissolved in the liquid
 Stokes-Einstein relation
 \[D_{\text{As@Au}}(T) = \frac{k_B T}{6 \pi \eta_{\text{As}} r_{\text{As}} \eta_{\text{Au}}(T)} \]
Arsenic vacancies

- unstable as neutral vacancy (a so-called “negative-U” system)
- strong contraction of the vacancy tetrahedron for negatively charged vacancy, as bonding linear combination of Ga dangling bonds becomes occupied

Y.A. Du, S. Sakong and P. Kratzer, PRB 87, 075308 (2013)
V_{As} diffusion in wurtzite

- in wurtzite ab-plane, barriers are lower as compared to zincblende case
V_{As} diffusion in wurtzite

- along the c-axis, V_{As} needs to go a detour to avoid crossing the Ga-Ga coordination line → higher barrier than in zincblende
Facet-dependent Ga diffusion

potential energy surface for Ga adatom
on GaAs (11-20)
(type 2)

on GaAs (10-10)
(type 1)

E_a=0.60eV
E_a=0.30eV

→ type 2 wurtzite wires support **faster** diffusion on the side wall.
As diffusion is much slower!

potential energy surface for As adatom on GaAs (11-20) type 2 (0001)

Eₐ = 0.64 eV

(1-100) → It is easier to supply arsenic to the growth zone via direct impingement on the Au particle, rather than via diffusion on the side facets.

on GaAs (10-10) type 1 (0001)

Eₐ = 1.20 eV

(11-20)
Side wall nucleation and radial growth

- type-1 wires: critical nucleus of more than one Ga atom (+ some As), results in a critical adatom density n_c

$$L = \frac{H}{2} \left(1 - \sqrt{1 - \frac{16n_c^{1/2}D(T)}{H^2a_0^2F_{Ga}\sin\theta}}\right)$$

- Tapering of the wires after sidewall nucleation if L exceeds the collection length

$D = 2 \times 10^{-6}$ cm2/s; $H = 80$ µm

⇒ $L = 22$ µm

V. Pankoke, S. Sakong and P. Kratzer, PRB 86, 085425 (2012)
Application II:

Molecular beam epitaxy on GaAs(001) $\beta 2(2 \times 4)$
Rates from first-principles calculations

\[\Gamma^{(k)} = W(f,i) = \Gamma^{(fi)}_0 \exp\left(- \frac{(E^{(fi)}_{TS} - E_i)}{kT} \right) \]
Surface diffusion on GaAs(001): mapping of PES to network graph

PES from DFT calculations → network of hops

barriers
minima
kMC with explicit list of process types

Voter’s lattice kMC:

- simulation on a lattice
- group possible transitions $\Gamma(f,i)$ from i to f into classes, each class is characterized by a rate
- classification of initial and final state by ‘atomic neighborhoods’ e.g., the number and relative position of neighbors define a process type

DFT-based kMC:

possible hops in the trench... .. modified rates due to neighbors.

A.F. Voter PRB 34, 6819 (1986)
kinetic Monte Carlo simulations for GaAs epitaxy

- 32 microscopically different Ga diffusion processes, and As$_2$ adsorption/desorption are included explicitly
- computational challenge: widely different time scales (10^{-12} sec to 10 sec)
- simulation cell 160 x 320 sites (64 nm x 128 nm)
kinetics of island nucleation and growth

1/60 of the full simulation cell
As$_2$ pressure = 0.85 x 10$^{-8}$ bar
Ga deposition rate = 0.1 ML/s
$T = 700$ K
island density

deposition rate
0.1 ML Ga per second, III/V ratio 1:1000, T=700K
scaling with temperature?

conventional nucleation theory
\[N_{is} = \eta \left(\frac{R}{D} \right)^{i^*/(i^*+2)} \]

- \(N_{is} \): island density
- \(D \): diffusion constant
- \(R \): deposition flux
- \(\eta \): numerical constant
- \(i^* \): critical nucleus

Summary: Bridging the time-scale gap

- molecular dynamics (Car-Parrinello method)
- accelerated molecular dynamics
 - using a boost potential (Voter, Fichthorn, ...)
 - temperature-accelerated MD
 (Montalenti et al. PRL 87, 126101 (2001))
- kinetic Monte Carlo with transition state search on the fly (avoids both lattice approximation and pre-defined rate table)
- lattice kinetic Monte Carlo, N-fold way (Voter PRB 34, 6819 (1986))
“Keep things as simple as possible, but not simpler ..”

Thank you for your attention!

Summary: arXiv:0904.2556