Time-dependent density functional theory (TDDFT)

Ralph Gebauer

Isfahan and Freiburg (my home town in Germany) are twin cities!
Isfahan and Freiburg (my home town in Germany) are twin cities!
Electronic excitations … what’s that?

End of self-consistent calculation

\[k = 0.0000 \ 0.0000 \ 0.0000 \ (8440 \ PWs) \ \text{bands (ev)}: \]

\[-29.5187 \ -13.9322 \ -11.7782 \ -11.7782 \ -8.8699 \ -1.8882 \ -1.8882 \ -0.2057 \ 0.9409 \ 1.0554 \]

highest occupied, lowest unoccupied level (ev): \[-8.8699 \ -1.8882 \]

! total energy \[=\] \[-43.17760726 \text{ Ry} \]

Why single-particle states?

\[\Rightarrow\] concept of quasi-particles
Excitations: Charged vs Neutral

Charged Excitations
N -> N+1 (or N-1)
(Photoemission Spectroscopy)

Neutral Excitations
N -> N
(Optical and Dielectric Spectroscopy)

Inverse Photoemission
Optical Absorption
Photoemission Spectroscopy

Optical Spectroscopy
Ab-initio approaches to excited states:

TDDFT (Time-dependent density functional theory): Neutral excitations

Many-body perturbation theory:
- \(\rightarrow \) GW (charged excitations)
- \(\rightarrow \) BSE (Bethe Salpeter equation) (neutral excitations)

Rules of thumb for using TDDFT

<table>
<thead>
<tr>
<th></th>
<th>RPA</th>
<th>ALDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Loss</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>Optical Prop</td>
<td>ok but..</td>
<td>ok but..</td>
</tr>
<tr>
<td>Energy Loss</td>
<td>ok</td>
<td>ok</td>
</tr>
<tr>
<td>Optical Prop</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>
Framework: What is TDDFT all about?

1964: Hohenberg and Kohn: Density Functional Theory (DFT)
work in terms of electron density (instead of many-particle wavefunctions)
DFT is a ground state theory

1984: Runge and Gross: Time-Dependent Density Functional Theory (TDDFT)

\[
\text{Given } |\Psi(t=0)\rangle : \hat{V}(r, t) \Leftrightarrow n(r, t)
\]

like DFT, TDDFT is formally exact

Recall: Basic ground-state DFT

For practical calculations: Kohn-Sham framework

\[
n_{\sigma}(r) = \sum_{i}^{N_{\sigma}} |\phi_{i\sigma}(r)|^2
\]

The density is written in terms of Kohn-Sham orbitals which satisfy

\[
\left[-\frac{\nabla^2}{2} + V_{KS}[n_\uparrow, n_\downarrow](r)\right] \phi_{i\sigma}(r) = \epsilon_{i\sigma} \phi_{i\sigma}(r)
\]

\[
F[n_\uparrow, n_\downarrow] = T_\uparrow[n_\uparrow, n_\downarrow] + E_{\text{Hartree}} + E_{\text{xc}}[n_\uparrow, n_\downarrow]
\]

\[
E_{\text{Hartree}} = \frac{1}{2} \int d^3r \int d^3r' n_\uparrow(r) n_\uparrow(r') \frac{1}{|r - r'|}
\]

\[
E_{\text{xc}}^{\text{LDA}} = \int d^3r \int d^3r' n_{\text{xc}}^{\text{LDA}}(n_\uparrow(r), n_\downarrow(r))
\]
The Runge-Gross Theorem

Generalizing the HK theorem to time-dependent systems

There exists a one-to-one correspondence between the external $v(r,t)$ and the electron density $n(r,t)$, for systems evolving from a fixed many-body state.

Proof:

\[
\begin{align*}
|\Psi(\mathbf{r}_0)\rangle &= |\Psi'(\mathbf{r}_0)\rangle \equiv |\Psi_0\rangle \\
n(\mathbf{r},t_0) &= n'(\mathbf{r},t_0) \equiv n'(\mathbf{r}) \\
j(\mathbf{r},t_0) &= j'(\mathbf{r},t_0) \equiv j'(\mathbf{r})
\end{align*}
\]

Step 1: Different potentials v and v' yield different current densities j and j'

Step 2: Different current densities j and j' yield different densities n and n'

\[v(\mathbf{r},t) \neq v'(\mathbf{r},t) + c(t) \quad \Rightarrow \quad n(\mathbf{r},t) \neq n'(\mathbf{r},t)\]

Using TDDFT in practice

Finding an equivalent of the Kohn-Sham formalism

\[i\frac{\partial}{\partial t} \varphi_{i\sigma}(\mathbf{r},t) = \tilde{H}_{KS}^\sigma(\mathbf{r},t) \varphi_{i\sigma}(\mathbf{r},t)\]

With a time-dependent Hamiltonian:

\[\tilde{H}_{KS}^\sigma(\mathbf{r},t) = -\frac{\nabla^2}{2} + v_{KS}[n_\uparrow, n_\downarrow](\mathbf{r},t)\]

Density and potentials are now defined like:

\[n_{\sigma}(\mathbf{r},t) = \sum_i^{N_\sigma} |\varphi_{i\sigma}(\mathbf{r},t)|^2\]

\[v_{\sigma}^{KS}[n_\uparrow, n_\downarrow](\mathbf{r},t) = v_{\sigma}(\mathbf{r},t) + \int d^3r' \frac{n(\mathbf{r'},t)}{|\mathbf{r} - \mathbf{r'}|} + v_{\sigma}^{\text{ext}}[n_\uparrow, n_\downarrow](\mathbf{r},t)\]
Which functional to use?

The easiest and probably most widely used functional is the Adiabatic Local Density Approximation (ALDA)

\[v^{\text{ALDA}}_{\sigma}(r, t) = \frac{\partial}{\partial n_{\sigma}} \left[n \rho_{\text{xc}}^{\text{unif}}(n_{\uparrow}, n_{\downarrow}) \right]_{n_{\sigma}=n_{\sigma}(r, t)} \]

TDDFT in real time:
(1996:Bertsch; 2001: Octopus code)

- Consider a general time-dependent perturbation:
 \[V_{\text{pert}}(r, t) \]
- Obtain orbitals, charge density, and potentials by solving the Schrödinger equation explicitly in real time:
 \[\psi_j(t + \Delta) = \exp \left(-i H (t + \frac{\Delta}{2}) \right) \psi_j(t) \]
 \text{(Nonlinear TD Schrödinger equation)}
- Can be used for linear response calculations, or for general TD non-linear problems.
A first application: Photochemistry

- Recent experimental progress made it possible to produce ultra-short intense laser pulses (few fs)
- This allows one to probe bond breaking/formation, charge transfer, etc. on the relevant time scales
- Nonlinear real-time TDDFT calculations can be a valuable tool to understand the physics of this kind of probe.
- Visualizing chemical bonds: Electron localization function

Nonlinear optical response

- Electron localization function:

\[
ELF(r, t) = \frac{1}{1 + \left[D_{\sigma}(r, t)/D_{\sigma}^0(r, t) \right]^2}
\]

\[
D_{\sigma}(r, t) = \tau_{\sigma}(r, t) - \frac{1}{4} \frac{[\nabla n_{\sigma}(r, t)]^2}{n_{\sigma}(r, t)} - \frac{j_{\sigma}^2(r, t)}{n_{\sigma}(r, t)}
\]
Example: Ethyne C$_2$H$_2$
How can we calculate optical spectra?

Consider a perturbation δV applied to the ground-state system:

$$\delta n(r, t) = \int d^3r' dt' \chi(r, r'; t - t') \delta V(r', t')$$

The induced dipole is given by the induced charge density:

$$d(t) = \int d^3r \delta n(r, t) \hat{r}$$

Consider the perturbation due to an electric field:

$$\delta V(r, t) = -eE_{\text{ext}}(t) \cdot \hat{r}$$

How can we calculate optical spectra?

The dipole susceptibility is then given by:

$$d(t) = \int dt' \alpha(t - t') E_{\text{ext}}(t')$$

The experimentally measured strength function S is related to the Fourier transform of α:

$$S(\omega) = \frac{2m}{\pi e^2 \hbar} \omega \text{Im} \alpha(\omega)$$

In practice: We take an E-field pulse $E_{\text{ext}} = E_0 \delta(t)$, calculate $d(t)$, and obtain the spectrum $S(\omega)$ by calculating

$$d(\omega) = \int_0^{\infty} dt e^{i\omega t - \delta t} d(t)$$
A typical dipole-function $d(t)$ …

… and the resulting spectrum
Linear response formalism in TDDFT:

- Calculate the system's ground state using DFT
- Consider a monochromatic perturbation:
 \[V_{\text{pert}}(\mathbf{r}, t) = \psi_0(\mathbf{r}) (\exp(i\omega t) + \exp(-i\omega t)) \]
- Linear response: assume the time-dependent response:
 \[\psi_j(t) = e^{-i\omega t} \left(\psi_j^0 + \delta \psi_j^+ e^{i\omega t} + \delta \psi_j^- e^{-i\omega t} \right) \]
 \[\delta n(\mathbf{r}, t) = \delta n^+ (\mathbf{r}) e^{i\omega t} + \delta n^- (\mathbf{r}) e^{-i\omega t} \]
 \[\delta V(\mathbf{r}, t) = V_{\text{pert}}(\mathbf{r}, t) + \delta V_{\text{SCF}}(\mathbf{r}) e^{i\omega t} + \delta V_{\text{SCF}}(\mathbf{r}) e^{-i\omega t} \]
- Put these expressions into the TD Schrödinger equation

\[\omega \delta \psi_\uparrow^0(r) = \left(H_{KS}^0 - e_\uparrow^0 \right) \delta \psi_\uparrow(r) + \hat{P}_\rho \left(\delta V_{\text{SCF}}^+(\mathbf{r}) + V_{\text{pert}}(\mathbf{r}) \right) \psi_\uparrow^0(\mathbf{r}) \]
\[-\omega \delta \psi_\downarrow^0(r) = \left(H_{KS}^0 - e_\downarrow^0 \right) \delta \psi_\downarrow(r) + \hat{P}_\rho \left(\delta V_{\text{SCF}}^-(\mathbf{r}) + V_{\text{pert}}(\mathbf{r}) \right) \psi_\downarrow^0(\mathbf{r}) \]

Now define the following linear combinations:

\[x_\uparrow(r) = \frac{1}{2} (\delta \psi_\uparrow(r) + \delta \psi_\downarrow(r)) \]
\[y_\uparrow(r) = \frac{1}{2} (\delta \psi_\downarrow(r) - \delta \psi_\uparrow(r)) \]
Linear response TD-DFT essentially means solving a non-hermitean eigenvalue equation of dimension $2N_v \times N_c$.

Standard way to proceed (Casida's equations):

- Solve the time-independent problem to completely diagonalize the ground-state Hamiltonian.

 [Some computer time can be saved by limiting the diagonalization to the lower part of the spectrum]

- Obtain as many eigenstates/frequencies of the TD-DFT problem as needed (or as possible).

 [Some computer time can be saved by transforming the non-hermitean problem to a hermitean one (e.g. Tamm-Dancoff approx.)]
Eigenstates of very large matrices: Davidson methods

Let H be a hermitean matrix, or large dimension, and we look for few low-lying eigenstates.

1. Select a set of trial eigenvectors \(\{ \mathbf{b}_i \} \) (typically 2x the number of desired eigenstates)

2. Calculate the representation of H in the space of trial vectors:

\[
G_{ij} = \langle \mathbf{b}_i \mid H \mid \mathbf{b}_j \rangle
\]

3. Diagonalize G (M is the number of desired eigenstates):

\[
G \mathbf{X} = \mathbf{X} \Lambda
\]

4. Create new trial vectors \(\mathbf{c}^k \):

\[
\mathbf{c}^k = \sum_i \alpha_i^k \mathbf{b}_i
\]

5. Calculate the residue \(\mathbf{r}^k \):

\[
\mathbf{r}^k = \sum_i (H - \lambda^k) \mathbf{c}^k
\]

6. Using an approximation \(\tilde{H} \) for \(H \), calculate the correction vectors :

\[
\delta^k = (\lambda^k - \tilde{H})^{-1} \mathbf{r}^k
\]

7. Orthogonalize the \(\{ \delta^k \} \) to the \(\{ \mathbf{b}_i \} \) and get new trial eigenvectors.

Example: Benzene molecule

<table>
<thead>
<tr>
<th>#</th>
<th>Energy (Ry)</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.38112073E+00</td>
<td>0.28954952E-06</td>
<td></td>
</tr>
<tr>
<td>0.41924668E+00</td>
<td>0.24532963E-08</td>
<td></td>
</tr>
<tr>
<td>0.41936205E+00</td>
<td>0.91804138E-08</td>
<td></td>
</tr>
<tr>
<td>0.43614131E+00</td>
<td>0.14279507E-04</td>
<td></td>
</tr>
<tr>
<td>0.47779248E+00</td>
<td>0.45835218E-01</td>
<td></td>
</tr>
<tr>
<td>0.47839553E+00</td>
<td>0.69172881E-05</td>
<td></td>
</tr>
<tr>
<td>0.47897354E+00</td>
<td>0.30424303E-02</td>
<td></td>
</tr>
<tr>
<td>0.47973541E+00</td>
<td>0.41971527E-07</td>
<td></td>
</tr>
<tr>
<td>0.49171128E+00</td>
<td>0.56778070E-08</td>
<td></td>
</tr>
<tr>
<td>0.49213150E+00</td>
<td>0.26186798E-06</td>
<td></td>
</tr>
<tr>
<td>0.50060722E+00</td>
<td>0.35194127E+00</td>
<td></td>
</tr>
<tr>
<td>0.50062231E+00</td>
<td>0.35154654E+00</td>
<td></td>
</tr>
<tr>
<td>0.50216495E+00</td>
<td>0.20407694E-07</td>
<td></td>
</tr>
<tr>
<td>0.50225774E+00</td>
<td>0.85588290E-07</td>
<td></td>
</tr>
<tr>
<td>0.50474444E+00</td>
<td>0.14963819E-08</td>
<td></td>
</tr>
<tr>
<td>0.51163438E+00</td>
<td>0.69570326E-05</td>
<td></td>
</tr>
<tr>
<td>0.51165089E+00</td>
<td>0.20331996E-06</td>
<td></td>
</tr>
<tr>
<td>0.51361736E+00</td>
<td>0.46846540E-02</td>
<td></td>
</tr>
</tbody>
</table>
Advantages:

One obtains not only the frequency (and oscillator strength), but the full eigenvector of each elementary excitation.

[Info can be used for spectroscopic assignments, to calculate forces, etc]

Disadvantages:

One obtains not only the frequency (and oscillator strength), but the full eigenvector of each elementary excitation.

[Info is often not needed, all the information is immediately destroyed after computation]

Computationally extremely demanding (large matrices to be diagonalized)

Time-dependent density functional perturbation theory (TDDFPT)

Remember: The photoabsorption is linked to the dipole polarizability $\alpha(\omega)$

$$d(t) = \int dt' \alpha(t - t') \mathcal{E}(t')$$

If we choose $\mathcal{E}(t') = \mathcal{E}_0 \delta(t')$, then knowing $d(t)$ gives us $\alpha(t)$ and thus $\alpha(\omega)$.

Therefore, we need a way to calculate the observable $d(t)$, given the electric field perturbation $\mathcal{E}_0 \delta(t)$.
Consider an observable A:

$$A(t) = \sum_i \left(\langle \delta \psi_i(t) | \hat{A} | \psi_i^0 \rangle + \langle \psi_i^0 | \hat{A} | \delta \psi_i(t) \rangle \right)$$

Its Fourier transform is:

$$\hat{A}(\omega) = \sum_i \left(\langle \psi_i^0 | \hat{A} | \delta \psi_i^{-}(\omega) \rangle + \langle \psi_i^0 | \hat{A} | \delta \psi_i^{+}(\omega) \rangle \right)$$

$$= 2 \sum_i \langle \psi_i^0 | \hat{A} | x_i(\omega) \rangle$$

$$= 2 \langle \alpha, 0 | x, y \rangle$$

Recall: $$(\omega - \mathcal{L}) | x, y \rangle = | 0, v \rangle$$

Therefore:

$$\hat{A}(\omega) = 2 \langle \alpha, 0 | (\omega - \mathcal{L})^{-1} | 0, v \rangle$$

Thus in order to calculate the spectrum, we need to calculate one given matrix element of $(\omega - \mathcal{L})^{-1}$.
In order to understand the method, look at the hermitian problem:

$$\langle \psi | (\omega - H)^{-1} | \psi \rangle$$

Build a Lanczos recursion chain:

$$\phi_{-1} = 0$$
$$\phi_0 = |\psi\rangle$$

$$b_{n+1}\phi_{n+1} = (H - a_n) \phi_n - b_n \phi_{n-1}$$

$$\langle \phi_{n+1} | \phi_{n+1} \rangle = 1$$

$$a_n = \langle \phi_n | H | \phi_n \rangle$$

$$H = \begin{pmatrix}
 a_0 & b_1 & 0 & \cdots & 0 \\
 b_1 & a_1 & b_2 & 0 & \cdots \\
 0 & b_2 & a_2 & \cdots & 0 \\
 \vdots & 0 & \cdots & \cdots & b_n \\
 0 & \cdots & 0 & b_n & a_n
\end{pmatrix}$$

$$\omega - H = \begin{pmatrix}
 \omega - a_0 & -b_1 & 0 & \cdots & 0 \\
 -b_1 & \omega - a_1 & -b_2 & 0 & \cdots \\
 0 & -b_2 & \omega - a_2 & \cdots & 0 \\
 \vdots & 0 & \cdots & \cdots & -b_n \\
 0 & \cdots & 0 & -b_n & \omega - a_n
\end{pmatrix}$$
Recall:

Therefore:

Use a recursion to represent L as a tridiagonal matrix:

$$L = \begin{pmatrix} a_1 & b_1 & 0 & & \\ c_1 & a_2 & b_2 & & \\ 0 & c_2 & a_3 & b_3 & \\ & & \ddots & \ddots & \ddots \\ & & & c_{N-1} & a_N \end{pmatrix}$$

Back to the calculation of spectra:

Recall:

$$\langle \omega - L | x, y \rangle = |0, v\rangle$$

Therefore:

$$\tilde{A}(\omega) = 2 \langle a, 0 | (\omega - L)^{-1} | 0, v \rangle$$

Use a recursion to represent L as a tridiagonal matrix:
And the response can be written as a continued fraction!

\[\tilde{A}(\omega) = 2 \langle a, 0 | (\omega - L)^{-1} | 0, v \rangle \]

\[= \frac{1}{\omega - a_1 + b_2 \omega - c_2 + \cdots} \]

How does it work?
Benzene spectrum

Plum: 1000
Red: 2000
Green: 3000
Black: 6000
Spectrum of C_{60}

- Black: 4000
- Blue: 3000
- Green: 2000

Spectrum of C_{60}: Ultrasoft pseudopotentials

- Black: 2000
- Red: 1000
Speeding up convergence: Looking at the Lanczos coefficients

![Diagram showing Lanczos iteration and coefficients](image)

- Even coefficients
- Odd coefficients

04/05/16
Effect of the terminator:

No terminator:

Effect of the terminator:

No terminator:
Effect of the terminator:

No terminator:

![Graph showing the effect of terminator on absorption strength with energy in eV on the x-axis and absorption strength on the y-axis for 500, 1000, 1500, and 2500 iterations.]

Effect of the terminator:

No terminator:

![Graph showing the effect of terminator on absorption strength with energy in eV on the x-axis and absorption strength on the y-axis for 500, 1000, 1500, and 2500 iterations.]

Effect of the terminator:

No terminator:
Terminator:

Energy [eV]
Absorption strength

500 iterations
1000 iterations
1500 iterations
2500 iterations

Effect of the terminator:

No terminator:
Terminator:

Energy [eV]
Absorption strength

800 iterations
2500 iterations
Analyzing the spectrum

Example of a squaraine dye:

Can we analyze given features of the spectrum in terms of the electronic structure?

YES!

It is possible to compute the response charge density for any given frequency using a second recursion chain.

Convergence of the TDDFPT spectrum

Isolated squaraine molecule

- converged spectrum
- 500 Lanczos iterations
- 1000 Lanczos iterations
- 2000 Lanczos iterations
Conclusions

• TDDFT as a formally exact extension of ground-state DFT for electronic excitations
• Allows to follow the electronic dynamics in real time
• Using TDDFT in linear response allows one to calculate spectra
Thanks to:

- Filippo De Angelis (Perugia)
- Stefano Baroni (SISSA & DEMOCRITOS, Trieste)
- Brent Walker (University College, London)
- Dario Rocca (UC Davis)
- O. Baris Malcioglu (Univ. Liège)
- Arrigo Calzolari (Modena)
- Quantum ESPRESSO and its community