Optoelectronic Materials: Transparent Conductors, Light Emitters

Chris G. Van de Walle

Materials Department, University of California, Santa Barbara

with

Cyrus Dreyer, Anderson Janotti, Hartwin Peelaers

Audrius Alkauskas (Ctr. f. Physical Sciences and Technology, Lithuania)

J. L. Lyons (Brookhaven National Lab.)

Qimin Yan (Lawrence Berkeley National Lab.)

Patrick Rinke (Aalto U.)

Emmanouil Kioupakis (U. Michigan)

Acknowledgments:
NSF, DOE, ARO, ONR; XSEDE, NERSC

Density Functional Theory and Beyond

Berlin, July 21, 2015
Transparent conducting oxides

Transparent conducting oxides (TCOs) have many applications:
- Contacts in solar cells
- Electrodes in LCD screens
- Touchscreens
- Smart windows

Possible because materials combine:
- Transparency
- Conductivity
Absorption processes

Direct valence- to conduction-band transition
→ band gap is 3.6 eV (344 nm)
→ no absorption in visible range (even into the UV)

Example: SnO$_2$
Absorption processes

Direct transition between conduction bands:
→ first to second conduction band: 4.7 eV (262 nm)
→ also not in visible range
Absorption processes

Indirect transition:
conduction band to conduction band

SnO$_2$
Absorption processes

Indirect transition:
→ requires additional momentum: e.g., from phonons

Often described by Drude model → phenomenological
Theoretical description

Absorption coefficient \rightarrow Fermi’s golden rule

$$\alpha^{el-ph}(\omega) = \frac{C}{\omega} \frac{1}{V_{cell}} \frac{1}{N_k N_q} \sum_{\nu ij k q} |\hat{e} \cdot (S_1 + S_2)|^2 \times P \delta(\varepsilon_{j,k+q} - \varepsilon_{ik} - \hbar \omega \pm \hbar \omega_{\nu q})$$

\[\hat{e}\] light polarization

$$S_1 = \sum_m \frac{\mathbf{p}_{im}(\mathbf{k}) g_{mij,\nu}^{el-ph}(\mathbf{k}, q)}{\varepsilon_{mk} - \varepsilon_{ik} - \hbar \omega}$$

$$S_2 = \sum_m \frac{g_{im,\nu}^{el-ph}(\mathbf{k}, q) \mathbf{p}_{mj}(\mathbf{k} + q)}{\varepsilon_{m,k+q} - \varepsilon_{ik} \pm \hbar \omega_{\nu q}}$$

$$P = \left(n_{\nu q} + \frac{1}{2} \pm \frac{1}{2} \right) (f_{ik} - f_{j,k+q})$$

Delta function: conservation of energy

The + signs indicates phonon emission, the – sign phonon absorption.

No fitting parameters! \rightarrow predictive!
Computational details: \(\text{SnO}_2 \)

- Norm-conserving pseudopotentials
- Plane-wave basis
- Local Density Approximation (LDA)
- Density functional perturbation theory (DFPT) to obtain phonons
- Absorption calculated at 300K

Focus on \(\text{SnO}_2 \) (techniques are general)

\(\text{SnO}_2 \): - rutile structure
- 6 atoms/unit cell
 - \(c \) direction important
Absorption spectrum

Linear on log-log scale

Over large range of wavelengths: power law!

Deviation for wavelengths < 450 nm
Absorption < 450 nm

\[\alpha_{\text{el-ph}}(\omega) = \frac{C}{\omega} \frac{1}{V_{\text{cell}}} \frac{1}{N_k N_q} \sum_{\nu i j k q} |\tilde{e} \cdot (S_1 + S_2)|^2 \times P\delta(\epsilon_{j,k+q} - \epsilon_{ik} - \hbar \omega \pm \hbar \omega_{\nu q}) \]

\[\rightarrow \text{absorption due to states near the band edges} \]
Contributions to absorption @ 300K

Emission of phonons is biggest contribution
→ possible even at low temperatures

⇒ Fundamental limit!
Fröhlich versus first principles

Similar power law for large wavelengths, but completely misses increase < 450 nm
→ Fröhlich only captures intraband transitions
Importance of LO modes

For large wavelengths: LO mode is dominant
Small wavelengths: other modes become important
→ defines region Fröhlich model can be used
Device implications

Using our numbers and $I = I_0 e^{-\alpha x}$

For 5×10^{20} cm$^{-3}$ carriers:

- Visible absorption: 2.5%
- Ultraviolet absorption: 12%
- Infrared absorption: 39% (telecom wavelength 1.5 μm)

Numbers for only one absorption process (due to phonons)
Since emission of phonons is always possible \rightarrow fundamental limit

LEDs for solid-state lighting

UCSB SSLEC, 2012

Cree.com
“ABC model” for internal quantum efficiency of LEDs

\[R = An \]

\[R = Bn^2 \]

\[R = Cn^3 \]

\[\eta = \frac{Bn^2}{An + Bn^2 + Cn^3} \]
Auger: loss mechanism

\[R = C n^3 \]
Direct & Indirect Auger recombination

Direct Auger

Indirect Auger

Carrier scattering by:

Electron-phonon

Alloy scattering

Charged defects

Bulashevich & Karpov, pssc (2008)
Indirect Auger recombination

\[R = 2 \frac{2\pi}{\hbar} \sum_{1234q\nu} f_1 f_2 (1 - f_3)(1 - f_4) |\tilde{M}_{1234}|^2 \]

\[\times \delta_{k_1 + k_2 + q, k_3 + k_4} \times \delta(\epsilon_1 + \epsilon_2 - \epsilon_3 - \epsilon_4 \mp \hbar\omega_{q\nu}) \]

\[\tilde{M}_{1234} = \sum_m \frac{\langle 1 | \Delta V | m \rangle \langle m 2 | W | 34 \rangle}{\epsilon_m \pm \hbar\omega_{q\nu} - \epsilon_1} + \ldots \]

Atomic-scale calculations from first principles, explicitly study microscopic scattering mechanisms

- **Electrons**: local density approximation + scissors operator
- **Phonons**: density functional perturbation theory
- **Dielectric function**: G. Cappellini *et al.*, PRB 1993
Calculating the Auger coefficient

\[R = 2 \frac{2\pi}{\hbar} \sum_{1234} f_1 f_2 (1 - f_3) (1 - f_4) |M_{1234}|^2 \]

\[\times \delta_{k_1+k_2, k_3+k_4} \times \delta(\epsilon_1 + \epsilon_2 - \epsilon_3 - \epsilon_4) \]

- Conserve momentum, eliminate \(k_4 \)-sum ⇒ 9D integral
- \(\delta \rightarrow \) Gaussian, vary band gap
- Sampling of \(k_1, k_2, k_3 \) on grid
- Generate all \(k_4 = k_1 + k_2 - k_3 \), pre-calculate wave functions
- \#\(k_1, k_2, k_3 \) ≈ 10-100, \#\(k_4 \) ≈ 1,000-5,000
- Parallel Auger code, biggest run ~3,000 CPUs for 4h
Auger Recombination in GaN and InGaN

The Smoking Gun: Direct observation of Auger electrons

Justin Iveland,¹ Lucio Martinelli,² Jacques Peretti,² James S. Speck,¹ and Claude Weisbuch¹,²,*
Short-range scattering

Need to model **short-range scattering** and **bands at edge of BZ**: First-principles theory
Shockley-Read Hall (SRH) and Auger are loss mechanisms.
Microscopic mechanisms of Shockley-Read Hall recombination unknown

- What are the mechanisms?
- What defects/impurities are responsible?
- What are the rates?
Why study defects?

• “Defects”
 – Extended defects
 • dislocations
 – Point defects:
 • Native defects
 • Impurities

• Defects often determine the properties of materials
 – Doping and its limitations
 – Device degradation
 – Diffusion
 – Radiative and nonradiative recombination
Formalism

- E_{form}: formation energy

Concentration of defects or impurities:

\[C = N_{\text{sites}} \exp \left(- \frac{E_{\text{form}}}{kT} \right) \]

- Example: gallium vacancy in GaN

\[E_{\text{form}}(V_{\text{Ga}}^{3-}) = E_{\text{tot}}(V_{\text{Ga}}^{3-})^{3} - E_{\text{tot}}(\text{bulk}) + \mu_{\text{Ga}} - 3 \ E_{\text{F}} \]

μ_{O}: energy of oxygen in reservoir, i.e., oxygen chemical potential

E_{F}: energy of electron in its reservoir, i.e., the Fermi level

- **General expression**

\[E_{\text{form}}(D^{q}) = E_{\text{tot}}(D^{q}) - E_{\text{tot}}(\text{bulk}) + n_{i} \mu_{i} + qE_{\text{F}} \]

n_{i}: number of atoms being exchanged to form the defect
Point defects in GaN

- Comprehensive study of point defects in GaN, using state-of-the-art methods
- Density functional theory, charge-state corrections
- Methodology:

Impurities in GaN: Carbon

- Carbon: common unintentional impurity
- Carbon on a nitrogen site: defect level ~1 eV above the valence band

First-principles approach for studying loss mechanisms

• Density functional theory (DFT)
• Hybrid functional provides accurate description of
 – Band gaps
 – Localized states
 – Vibronic properties of defects
J. Heyd, G. E. Scuseria, M. Ernzerhof,
• Supercell approach for studying defects
J. L. Lyons, A. Janotti, and C. G. Van de Walle,
Shockley-Read Hall (SRH) based on nonradiative capture of carriers by defects

- First step to understand SRH: Calculate rate of nonradiative capture at defects

- Given by:
 - Defect density \(N_D, N_A \)
 - Carrier density \(n, p \)
 - Capture coefficient \(C_p, C_n \)

- Capture coefficient gives rate of capture of one carrier at one defect in a volume \(V \): \(C_{n/p} = V r \)

- Capture due to change in electronic state due to electron-phonon coupling
General form of nonradiative capture coefficient

Describes transition from initial electronic state \((i)\) and vibronic state \((m)\) to final electronic state \((f)\) and vibronic state \((n)\)

\[
C_p = \frac{2\pi V}{\hbar} g \sum_m \omega_m \sum_n |\Delta H_{im;fn}^{\text{e-ph}}|^2 \delta(E_{im} - E_{fn})
\]

- Volume
- Thermal occupation of phonons
- Electron-phonon coupling
- Energy conservation
First order in the electron-phonon coupling

Describes transition from initial electronic state \((i)\) and vibronic state \((m)\) to final electronic state \((f)\) and vibronic state \((n)\)

\[
C_p = \frac{2\pi V}{\hbar} g \sum_m w_m \sum_n |\Delta H_{im;fn}^{e-ph}|^2 \delta(E_{im} - E_{fn})
\]

\[
\Delta H_{im;fn}^{e-ph} = \sum_k \langle \Psi_i | \partial \hat{H} / \partial Q_k | \Psi_f \rangle \langle \chi_{im} | Q_k - Q_{0;k} | \chi_{fn} \rangle
\]

\(W_{if}\), Electron-phonon coupling

Overlap between vibronic states
Electron-phonon coupling: One-dimensional approximation

- Consider one special phonon mode that couples most strongly to distortion caused by carrier capture
- Good approximation for system with strong electron-phonon coupling
 - Gives accurate phonon broadening of lineshapes

Determine vibronic states for special mode

- To obtain ΔQ, χ_i, χ_f:
 - generate “configuration coordinate diagram”
- *e.g.*, for hole capture at C_N in GaN:
Electron-phonon coupling for special mode

\[W_{if} = \langle \Psi_i \mid \frac{\partial \hat{H}}{\partial Q} \mid \Psi_f \rangle \approx \langle \psi_i \mid \frac{\partial \hat{h}}{\partial Q} \mid \psi_f \rangle = (\epsilon_f - \epsilon_i) \langle \psi_i \mid \frac{\partial \psi_f}{\partial Q} \rangle \]

Approximate many-body quantities by single-particle counterparts

- DFT calculations yield
 - single-particle wavefunctions \((\psi_{i/f})\)
 - eigenvalues \((\epsilon_{i/f})\)
 - response to displacement \(Q\)

see also:
Results: Hole capture at C_N in GaN

A. Alkauskas, Q. Yan, and C. G. Van de Walle, PRB 90, 075202 (2014).

In progress: Hole capture at V_{Ga} complexes

- Complexes with V_{Ga} have midgap levels, may be important as recombination centers
 - V_{Ga}-O$_N$-H: $C_p \approx 8 \times 10^{-11}$ cm3s$^{-1}$
 - V_{Ga}-2H: $C_p \approx 2 \times 10^{-10}$ cm3s$^{-1}$
Summary

• First-principles approach for nonradiative capture rates

• Luminescence lineshapes for cases of strong and intermediate electron-phonon coupling

• Origin of SRH recombination in nitrides