Beyond Ordered Materials: Understanding Catalytic Sites on Amorphous Solids

Bryan R. Goldsmith, Baron Peters, J. Karl Johnson, Bruce C. Gates, and Susannah L Scott

ACS Catal., Just Accepted Manuscript • DOI: 10.1021/acscatal.7b01767 • Publication Date (Web): 13 Sep 2017

Downloaded from http://pubs.acs.org on September 18, 2017

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
Beyond Ordered Materials: Understanding Catalytic Sites on Amorphous Solids

Bryan R. Goldsmith,*1,⊥ Baron Peters,⊥‡ J. Karl Johnson,§ Bruce C. Gates,⊥ and Susannah L. Scott,*⊥§

∥Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
†Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
‡Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
§Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, USA
⊥Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
‡Department of Chemical Engineering, University of California, Davis, California 95616, USA

ABSTRACT: Amorphous materials are widely used as components of solid catalysts, and have been the subject of much applied research. In some instances, their catalytic performance is demonstrably superior to that of their crystalline counterparts, due in part to their greater flexibility. Amorphous or disordered phases can also be generated from crystalline phases under reaction conditions, thus ex-situ observations of long-range order may provide an incomplete or misleading picture. Until recently, theorists and experimentalists have mostly neglected these important materials in fundamental studies, preferring instead to study “well-defined” (often crystalline) catalysts that are potentially more tractable and amenable to computational modeling of their structure-activity relationships. The amorphous materials were assumed to be simply non-uniform versions of compositionally-similar materials with long-range order, having the same key features at short and medium length scales. In this Perspective, shortcomings of this assumption are discussed, as well as challenges inherent in tackling amorphous catalysts more directly, namely, identifying and describing the active sites (especially under reaction conditions), discerning how subtle structural variations modulate site activity, and building atomically detailed models of amorphous catalysts. Three important classes of amorphous catalytic materials are highlighted to illustrate key issues: amorphous oxides, metal ions atomically dispersed on amorphous supports, and supported metal clusters. Amorphous and disordered silicas, aluminas, and silica-aluminas, are discussed in terms of challenges and progress toward identifying how their local structural disorder and surface heterogeneity may impact the behavior of active sites. Promising models of amorphous materials with atomistic detail and increased fidelity to experiment are becoming available. However, for reactions in which small fractions of sites dominate the total activity, computational estimates of the observed kinetics will require statistical sampling methods, even for the most detailed catalyst models. Further developments in in situ and operando characterization techniques and computational modeling will advance our understanding of amorphous catalytic materials and the impact of structural disorder.

Keywords: Amorphous oxides, Supported metal clusters, Dispersed metal ions, Non-crystalline catalysts, Heterogeneity, Atomic-level characterization, First-principles modeling

1. INTRODUCTION

Ever since H. S. Taylor articulated the seminal concept of active sites on catalytic surfaces,1 including the idea that there is a distribution of such sites with varying reactivity associated with heterogeneity in the local coordination environment, researchers have been attempting to identify and describe them. In the last half-century, many of the seminal advances in our understanding of catalysis have emerged from the study of model catalysts with uniform catalytic sites, including single crystal surfaces and ordered microporous materials. Recognition of these achievements resulted in a Nobel prize to G. Ertl for understanding chemical processes on solid surfaces via modern surface-science approaches (e.g., CO oxidation on well-ordered platinum surfaces).2

Although much insight into catalysis can be gained from studying well-defined model systems, the major components of commercial catalysts are often amorphous (lacking long-range order)3 rather than crystalline materials, chosen not only because they are typically inexpensive and have highly tunable physical properties such as porosity, but also because their activities and productivities can be significantly higher.4−9 However, the inherent heterogeneity in both composition and structure of amorphous catalysts makes identification of their active sites extremely challenging. Structures are often sensitive to synthesis conditions, and can change under reaction conditions. Furthermore, a small fraction of surface sites may contribute most of the observed reactivity.8

Silica is a prototypical amorphous material present in many solid catalysts,10−11 whereas crystalline silica polymorphs are almost never used, in part because of their much lower surface areas. Amorphous silicas with regular mesopore structures, such as MCM-41 and SBA-15, are valuable as model catalyst supports. Silica-aluminas with high silica contents are
also amorphous. Zeolite stabilization through steaming is accompanied by the appearance of extra-framework amorphous silica-alumina.12-13 Amorphous alumina can also be prepared, and is believed to have a greater concentration of defects (e.g., anion vacancies) and more distorted (Lewis acidic) Al sites than its crystalline counterparts.14-20 Even the transition aluminas such as γ-Al₂O₃ which have powder X-ray diffraction patterns, exhibit various degrees of disorder depending on the synthesis conditions.18-20 Amorphous mixed metal oxides like hopcalite (Cu–Mn mixed oxide) are used to catalyze CO oxidation and the decomposition of volatile organic compounds in gas streams.21-22 The importance of amorphous structures in catalysis is not limited to oxides. For example, amorphous Ni-B and Ni-P alloys show more activity as hydrogenation catalysts than microcrystalline Raney nickel.23-24 Functionalized amorphous carbon is an active catalyst for biodiesel production, whereas its crystalline forms are inactive.25 Amorphous metal sulfides and borides are reported to be more active hydrogen evolution electrocatalysts than the corresponding crystalline forms.7,26

The evolution of catalysts that are nominally crystalline into amorphous forms in their working state appears to be a common phenomenon. For example, VOHPO₄·0.5H₂O catalyzes the selective oxidation of n-butane to maleic anhydride, and is introduced into the reactor as a crystalline material;27 however, it is transformed under reaction conditions to a highly disordered phase which is inferred to be the catalytically active phase. Likewise, alkene ammoxidation catalysts (e.g., Bi₅MoO₁₇ and MoVNbTeO₄) may be disordered under reaction conditions.28-29 As another example, an X-ray amorphous Co₃O₄(OH)y surface shell that forms reversibly on crystalline Co₃O₄ under electrochemical conditions is found to be essential to its high oxygen evolution activity, Figure 1.30 Amorphization is accompanied by a partial change in Co coordination from tetrahedral to octahedral and an increase in the average Co oxidation state. Thus, \textit{ex situ} observations of static long-range order may give a misleading picture of these inherently dynamic systems. The structures of well-defined nanomaterials such as crystalline metal particles and ordered metal-organic frameworks31 often used as pre-catalysts may bear little resemblance to the active sites of the catalytic materials.

![Figure 1](image-url)

Figure 1. Schematic of possible near-surface structures on a crystalline Co₃O₄ core under electrochemical conditions during the oxygen evolution reaction. (a) At potentials below Co redox features, Co₃O₄ exists in a healed resting state, in which reduced Co sites caused by defects in the near-surface are oxidized to Co₃O₄. (b) At elevated anodic electrode potentials, the Co₃O₄ surface is transformed into Co₃O₄(OH)y, leading to reversible amorphization of the active sub-nanometer-thick shell. This Co₃O₄(OH)y shell consists of di-µ-oxo-bridged Co³⁺/⁴⁺ ions with random site occupancy in the ideal cubic close-packed O²⁻ lattice. Adapted from Ref. 30, with permission from Nature Publishing Group.

Amorphous oxides (e.g., SiO₂) have often been assumed to have local structures similar to those of compositionally similar crystalline polymorphs, but with very small ordered domains.32 For example, the surface of amorphous silica has been modeled as a mixture of various crystal terminations33 of β-cristobalite.34 However, while these models strictly match the local (i.e., first-coordination sphere) environment of Si, they reproduce neither the siloxane ring-size distribution nor the silanol type distribution of amorphous silicas.35 Incompletely condensed silsesquioxanes, which are highly convex molecular clusters decorated with silanols, have been used (with limited success) as molecular models for silica on the basis of a geometric resemblance between their silanol arrangement and the ordered hydroxyls on the (111) surface of β-cristobalite.36-38 However, the reactivity of incompletely condensed silsesquioxanes often bears little resemblance to that of amorphous silica39 and their tendency to form oligomeric complexes in solution hinders their value as models for isolated catalyst sites.40 An additional important issue for amorphous alumina is the variability in local Al coordination environments (number and geometric arrangement of oxygen ions), relative to those found in crystalline aluminas.

Recent developments in both experimental capabilities and theory promise long-awaited progress in our understanding of heterogeneous materials; thus it is timely that more attention is now focused on the investigation of amorphous catalysts.41 Expanding our fundamental knowledge about the important roles of heterogeneity, disorder, and dynamic catalyst behavior will advance catalysis science beyond the study of ideal systems to approach the complexity of real working catalysts.

For this Perspective, we selected the three classes of catalysts shown in Figure 2 to illustrate key issues in understanding and describing heterogeneity: (a) amorphous oxides, (b) metal ions atomically dispersed on amorphous supports, and (c) metal clusters interacting with amorphous supports. First, we discuss experimental and computational investigations of amorphous catalytic materials, focusing on the characterization of surface heterogeneity and the nature of the active sites. Note, we focus primarily on simple oxide supports such as silica and alumina; more complicated oxides such as amorphous mixed cobalt oxide/phosphate are beyond the scope of this Perspective.42 Next, various \textit{ab initio} modeling approaches are assessed, particularly regarding the challenges posed by these materials. The importance of statistical considerations in the interpretation of activity predictions is also emphasized. Opportunities for collaborations between theorists and experimentalists to improve our understanding of amorphous catalysts are highlighted, especially in the development of more realistic structural models for amorphous catalysts, and the atomic-level characterization of their surface sites in reactive environments.
and positively charged oxygen vacancies at most operating temperatures, having limited neutrality and almost no redox chemistry. Tremendous effort has been expended over many decades in characterizing its bulk and surface structure using spectroscopic and scattering techniques (e.g., IR, Raman, solid-state NMR, and inelastic neutron scattering). Yet, the influence of structural disorder and surface heterogeneity of amorphous silica on the behavior of active sites remains difficult to probe and is still poorly understood.

While both amorphous and crystalline silicas have very high short-range order (all Si atoms are tetrahedral, with four oxygen ligands, in both types of material), amorphous silica has no long-range order, and limited medium-range order. The bulk structure of amorphous silica is believed to be based on the organization of $[\text{SiO}_4]^{4-}$ units randomly into siloxane rings of various size and strain.\(^{49,51}\) Recently, the atomic-level structure of an amorphous silica bilayer grown on Ru(0001) was resolved in real space (Figure 3).\(^{52,53}\) This system offers exciting opportunities to probe its structure-reactivity relationships. The silica bilayer is amorphous in the xy-plane (substrate plane), although it is ordered in the z-direction and atomically flat at the surface. Based on a statistical analysis, a log-normal ring size distribution centered on six as the most abundant ring size (i.e., Si_6O_{18}) was observed across the silica bilayer, Figure 3b.\(^{52,54}\) Formation energy calculations for the various-sized silica rings using density-functional theory (DFT) correlate with the population of ring sizes as determined by STM, as does a theoretical silica model constructed using random network theory.\(^{52,54-56}\) Combinations of ring sizes that share a common Si atom (ring triplets klm, with ring sizes of k, l, and m) were examined to search for short-range correlations. The most common ring triplets were 567, 667, and 566, which were inferred to be most probable due to strain minimization.\(^{55}\) It has been demonstrated experimentally\(^{57}\) and computationally\(^{58-59}\) that local strain in silica rings can have a large effect on catalyst formation and activity.

![Figure 2](image-url)
Figure 2. Illustrative examples of three important classes of amorphous catalytic materials: (a) Amorphous oxides: Silica-alumina, represented by a slab model with various exposed hydroxyl groups and embedded aluminum centers (O = red; Al = pink; Si = yellow; H = white). Numbers denote distinct types of Brønsted acid sites. Red labels indicate sites capable of protonating lutidine. (b) Metal ions atomically dispersed on amorphous supports: A slab model for an isolated dioxoMo(VI) site covalently attached to amorphous silica, generated by DFT geometry optimization (O = red; Mo = blue; Si = yellow; H = white). (c) Supported metal clusters: Model of a Pt$_{13}$ cluster interacting with amorphous silica, showing the charge depletion experienced by interfacial Pt atoms (red) interacting with surface hydroxyl groups, and their electron-rich Pt neighbors (blue). Grey-colored Pt atoms are approximately neutral. Figure 2a is from Ref. 43, with permission from The Royal Society of Chemistry; Figure 2c is adapted from Ref. 44, with permission from the American Chemical Society.

2. EXPERIMENTAL AND COMPUTATIONAL APPROACHES IN THE INVESTIGATION OF AMORPHOUS CATALYSTS

2.1. Amorphous Oxides as Catalysts and Catalyst Supports. Amorphous and disordered silicas, aluminas, and silica-aluminas are all common catalyst components because (1) many of them are mechanically and thermally robust, with high surface areas associated with interconnected micro- and mesopores to allow for relatively rapid mass transport of reactants and products, and (2) they can impart stability and activity to a wide variety of catalytically active phases dispersed on their surfaces.\(^{45,46}\) Powders and pellets of these partially or completely amorphous oxides, often consisting of microparticle aggregates held together by interparticle interactions, are widely used in industrial catalytic processes.

Amorphous silica is used as the support for catalysts in the industrial production of sulfuric acid, 1-alkenes, and polyethylene.\(^{57}\) Silica is relatively simple and chemically inert in comparison to other common oxides, having limited neutral and positively charged oxygen vacancies at most operating temperatures,\(^{48}\) and almost no redox chemistry. Tremendous effort has been expended over many decades in characterizing its bulk and surface structure using spectroscopic and

![Figure 3](image-url)
Figure 3. (a) Atomic-resolution STM image of an amorphous silica bilayer on Ru(0001). Silicon atoms appear at the center of SiO$_4$ triangles that correspond to SiO$_4$ tetrahedra in three dimensions. In the lower right corner of the image, atomic positions are denoted with green (Si) and red (O) spheres. (b) Ring size distribution of the amorphous silica bilayer determined by STM (histogram of 317 rings, partially displayed in Figure 3a). The red dashed curve is a log-normal fit. Adapted from Ref. 54, with permission from Elsevier.

Much of the chemistry associated with amorphous silicas is controlled by its surface hydroxyl groups. As synthesized, the silica bilayers described above lack such hydroxyls. Recently, however, silanols were generated in one of these films by depositing an amorphous layer of solid water, then irradiating the surface with a low-energy electron beam.\(^{60}\) Future work on
adsorbing various catalyst components onto hydroxylated amorphous silica films may allow these materials to serve as interesting structural models for silica-based catalysts, although the proximity of the catalytic sites to the underlying metal surface creates opportunities for undesired side-reactions.

Transition aluminas are used as catalysts for a variety of industrial reactions including H₂S decomposition (the Claus process), alcohol dehydration, and alkene isomerization. They are also used as catalyst supports in petroleum naphtha reforming and oil hydroprocessing, as well as in many selective hydrocarbon oxidation reactions. The surface chemistry of the transition aluminas, exemplified by the high surface area polymorph γ-Al₂O₃, has been reviewed recently. Amorphous forms differ from the transition aluminas in their hydroxyl populations, as well as in their Lewis acidities. Multiple alumina phases are sometimes present, and may be interconverted during catalyst preparation and use. Computational models of the transition and amorphous alumina surfaces, incorporating both acidic (bridging) and basic (terminal) hydroxyl groups and three-, four- and five-coordinate Lewis acidic Al³⁺ sites, have improved over the years, but their relationships to the real materials continue to be debated.

Amorphous silica-alumina is a common support (or support component) for catalysts used in hydrocarbon cracking, and is considered promising as a component of biomass conversion catalysts, due to its greater hydrothermal stability compared to either silica or alumina alone. The structure and surface chemistry of amorphous silica-alumina have been the subjects of many spectroscopic and computational investigations. It is often denoted SiO₂·Al₂O₃, although silica-rich forms are mixed oxides rather than a mixture of oxides, with isomorphic Al³⁺ substitution for Si⁴⁺ ions. Interestingly, their surface chemistry differs significantly from those of the crystalline aluminosilicates (e.g., zeolites). Unlike zeolites, silica-aluminas possess significant Lewis acidity. Their Brønsted acidity, while stronger than silica or alumina, is weaker than that of zeolites, which makes them particularly useful in selective hydrocracking reactions. Lower cracking activity of amorphous silica-aluminas relative to the zeolite mordenite was deemed to result from their preference for alkoxide reaction pathways, due to their limited ability to stabilize carbocations.

The origin of the strong Brønsted and Lewis acidity of amorphous silica-aluminas has been a topic of sustained research interest. Four-, five-, and six-coordinate Lewis acidic Al³⁺ sites have been proposed to be present based on interpretation of spectral data. Typically, the only hydroxyl groups detected spectroscopically on dehydrated SiO₂·Al₂O₃ are terminal silanols. Zeolite-like bridging hydroxyl groups are sometimes proposed to be present, but may be associated with samples compromised by traces of adventitious water, which is difficult to exclude from dehydrated amorphous silica-aluminas because they are extremely hygroscopic. The high Brønsted acid strength of amorphous silica-alumina compared with that of SiO₂ and Al₂O₃ may arise from the stabilization of silanolate groups by their interaction with a nearby coordinatively-unsaturated Lewis acidic Al³⁺ site, Figure 4b (in contrast to that of zeolites, which have a high Brønsted acid strength as a result of the presence of bridging hydroxyl groups, Figure 4a).

2.2. Metal Ions Atomically Dispersed on Amorphous Supports. A few examples of important catalysts that involve isolated metal ions dispersed on high surface area amorphous or disordered supports include CrO₃/SiO₂, MoO₃/Al₂O₃, WO₃/SiO₂ and Re₂O₃/Al₂O₃. They have long been used for the industrial production of polyolefins, and in large-scale, continuous alkene metathesis. The catalysts are prepared as highly dispersed metal cations, which have much higher activities than their aggregated metal oxide counterparts.

Isolated metal ions on amorphous supports can also be synthesized by reactions of mononuclear precursor complexes with the functional groups that exist naturally on the support, or that are installed by prior surface modification. Catalysts made in this way usually consist of a well-defined component (i.e., the metal ion and its residual molecular ligands) and an amorphous component (i.e., ligands that are part of the support). Figure 5. Subtle structural variations in such active sites dispersed on silica can include Si-O-M bond angles, metallasiloxane ring strain, and variable coordination of siloxane donor ligands. This is a crucial point, since the non-uniformity of the amorphous component complicates efforts to elucidate catalyst structures and reaction mechanisms, and to construct meaningful structure-catalytic activity relationships.

In the case of supported CrO₃ catalysts for ethene polymerization (commonly known as Phillips catalysts), structural heterogeneity in the support and the support composition are expected to cause substantial variation in the...
relative rates of initiation, propagation, and termination steps.59,89-91 For instance, the presence of Ti4+ ions in the silica support accelerates the initiation process, while the addition of Al3+ ions to the silica support increases the sensitivity of the active sites toward H\textsubscript{2} as a chain transfer agent. However, the use of a crystalline support in CrO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} gives only about 10-20\% of the polymerization activity of the fully amorphous CrO\textsubscript{2}/SiO\textsubscript{2}; TiO\textsubscript{2} is also a poor support for chromium oxide.6 The important influence of variable CrO\textsubscript{2}/SiO\textsubscript{2} catalyst site environments is consistent with the known propensity of the catalyst to produce polyethylene with high dispersities (typically, 20-30), its ability to co-produce 1-alkenenes and to incorporate them as short-chain branches, and to reincorporate terminated chains as long-chain branches. Since each of these features likely requires a slightly different active site configuration, “single-site” models of catalysts such as CrO\textsubscript{2}/SiO\textsubscript{2} are understandably inadequate to describe their catalytic behavior in detail.

Indeed, although CrO\textsubscript{2}/SiO\textsubscript{2} has been used successfully for more than six decades in the industrial production of high-density polyethylene, the mechanism by which the inorganic precursor sites of this catalyst spontaneously initiate polymerization remains hotly disputed,89-90,92-95 even though the chain propagation mechanism has been settled for some time. Experiments, DFT calculations and microkinetic modeling have repeatedly suggested that Cossee–Arlman propagation at a monoalkylchromium(III) site is the most likely ethene polymerization mechanism.89 Recent DFT calculations using cluster models by some of the authors suggested that the initial activation of Cr(II) sites to yield monoalkylchromium(III) sites could occur by oxidative disproportionation of ethene followed by homolytic Cr-C bond cleavage,96 which is supported by the \textit{in situ} experimental observation of vinyl sites (≡SiO)\textsubscript{2}CrIII-CH=CH\textsubscript{2}, an electron paramagnetic resonance signal characteristic of organic radicals, and GC detection of n-butane.97-99 Based on the computational evidence, this mechanism appears to require hemilability of the spectator siloxane ligands to facilitate the homolysis step while still enabling ethene oxidative addition, Figure 6.98 Reactions involving hemilabile ligands could be promoted by the greater flexibility of amorphous silicas, compared with their crystalline counterparts.

![Diagram](https://example.com/diagram.png)

Figure 6. A proposed Phillips catalyst initiation mechanism requiring flexibility in the amorphous silica support. Ethene oxidative addition followed by homolytic bond cleavage on isolated Cr(II)/SiO\textsubscript{2} precursor sites yields activated monoalkylchromium(III) sites. The homolysis rate is promoted by the interaction of siloxane ligands with Cr, but ethene oxidative addition is faster when the siloxanes dissociate. Structures in red show a possible path for fast site activation involving reversible coordination of hemilabile siloxane ligands. Adapted from Ref. 96, with permission from the American Chemical Society.

Recently, initiation of the Phillips catalyst by heterolytic C-H bond activation100 of ethene was examined with DFT calculations for five different (SiO)\textsubscript{2}Cr(III) sites on an amorphous silica slab model.91 One of the five sites was viable for all of the required steps (initiation, polymer chain growth, and termination without deactivation). In this sense, the authors addressed an earlier critique of this mechanism by Peters \textit{et al.}92 They also demonstrated that different sites can differ in reaction energy by as much as 272 kJ/mol for the same elementary step. However, the proposed (SiO)\textsubscript{2}Cr(III) sites were created by artificially changing entire ≡SiOH groups in the amorphous silica model into Cr atoms, creating highly strained environments that may not be accessible via actual chemical grafting or calcination processes. We stress that the thermal energy \(k_B T\) at typical calcination temperatures (ca. 10 kJ/mol) is vastly smaller than the energetic differences between these sites (e.g., > 200 kJ/mol for some reactions). Moreover, the alchemical manner in which these sites were created prevents any quantitative assessment of their abundance vs. the abundance levels that would explain the observed catalyst activity.7 For those catalysts where the active species are grafted to the support and activated with only mild calcination, questions about site heterogeneity could begin to be addressed more seriously by using atomistically-detailed models of the amorphous support and by explicitly modeling the grafting and thermal activation steps.

In a second example, supported methyltrioxorhenium (CH\textsubscript{3}ReO\textsubscript{3}, MTO) has been used as a model for ReO\textsubscript{2}/SiO\textsubscript{2}-Al\textsubscript{2}O\textsubscript{3} and ReO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3} which are alkene metathesis catalysts active at room temperature. The initiation of alkene metathesis catalyzed by supported MTO (and similarly, supported ReO\textsubscript{2}) is still incompletely understood, despite much effort.101-108 Since solutions of MTO do not catalyze alkene metathesis in the absence of a Lewis acid, the oxide support is inferred to serve as an activator. Metathesis activity correlates with the availability of Lewis acid sites; MTO interacting with Brønsted acid sites was found to be unreactive.103 Crystalline zeolite Y109 and \(\gamma\)-alumina110-111 are much less effective in activating MTO than amorphous silica-alumina,103 which is in turn less effective than chlorinated (and disordered at the surface) alumina.107 Some of the proposed structures are shown in Figure 7. The involvement of three-coordinate Al sites has been suggested in promoting the formation of a bridging methylene (C) which is the precursor of an active terminal methylene,112 however, the most active catalysts lack the \(^{13}C\) NMR signal assigned to this site,109,107 and three-coordinate Al sites which are proposed computationally108 have yet to be detected experimentally. Further understanding how the local environment of the surface aluminum ions, which is related to the Lewis acidity, is needed to advance our understanding of the activation of MTO.
Many metal clusters exhibit such behavior, interconverting at reaction conditions.

Metal carbonyl clusters have been explored as molecular precursors of uniform supported metal clusters, via cluster decarbonylation with retention of the metal framework. For example, Ir₄/γ-Al₂O₃ was synthesized by adsorption of Ir₄(CO)₁₂ followed by decarbonylation. Adsorption of Ir(CO)₃(acac) (acac = acetylacetonato) on γ-Al₂O₃ followed by reductive carbonylation gave supported [Ir₄(CO)₁₂]⁺ in high yield. Decarbonylation led to supported Ir₄ clusters. Both Ir₄ and Ir₈ clusters likely form metal hydrides via oxidative addition of surface hydroxyl groups. The metal ions in positive oxidation states are likely localized at the metal-support interface. EXAFS can provide some information about the metal-support interface, although the information is averaged over the entire sample. The key result is that the metal-support oxygen distances generally observed on both amorphous and crystalline metal oxide (and zeolite) supports are about 2.1 Å, just as observed for mononuclear metal complexes and consistent with positive oxidation states for the metal ions (whereas distances of 2.5-2.7 Å are typical of zero-valent metal clusters).

Well-defined supported metal clusters have been formed by soft-landing of mass-selected clusters onto planar surfaces. For instance, Ag₃ clusters deposited on amorphous alumina in this way were investigated in the selective oxidation of propene to propene oxide. Under reaction conditions, sintering of the Ag₃ clusters gave small aggregates with per-surface-atom turnover rates similar to Ag₃ but greater selectivity toward propene oxide (rather than the acrolein side-product). The activation energies were computed by DFT for the formation of both products on different Ag sites. The availability of subsurface oxygen was found to control selectivity. In Ag clusters (ca. 50 atoms), oxygen adatoms stabilized at nanoparticle edges result in a lower energy barrier for acrolein production, whereas larger Ag aggregates (modeled as the surface oxide Ag₃O/Ag(111)) are more selective for propene oxide. The higher diffusion barrier for subsurface oxygen in the larger aggregates limits H-abstraction from the oxametallacycle intermediate. The role of the amorphous alumina support in these processes was not investigated, and requires further examination.

First-principles (ab initio) modeling can give insight into metal cluster structures and their properties on amorphous supports. According to recent predictions, mono-disperse Pt clusters supported on amorphous silicas with varying degrees of hydroxylation may exhibit non-uniform reactivity because the precise location of the cluster on the surface influences the extent of charge transfer across the metal-support boundary. Nonetheless, computational studies of catalysis under realistic conditions remain difficult, and advances in computational modeling are needed before predictions with chemical accuracy (≤ 1 kcal/mol) become routine. In the following section, we discuss conventional modeling approaches and promising models of amorphous catalytic materials, as well as challenges regarding their accurate modeling.

3. COMPUTATIONAL MODELS OF AMORPHOUS CATALYTIC MATERIALS
3.1. Modeling using Predefined Structures. Most computational investigations of solid catalysts have long focused on reactions on the surfaces or in the pores of crystalline metals, metal oxides, and zeolites (and, more recently, metal-organic frameworks). Attempts to model reactions involving amorphous catalytic materials, such as the activation of isolated CrO species on silica for ethene polymerization\cite{89,90,144,146} and isolated MoO and WO\(_x\) sites on silica for alkene metathesis,\cite{147,149} are less common. The greater challenges for the amorphous materials arise due to a lack of information about (1) local environments around the catalytic sites, and (2) subtle structural and electronic variations in the diverse site environments. To model these types of materials, \textit{a priori} decisions must be made about likely structures based on incomplete information.

Computational investigations of amorphous catalysts require the use of either \textit{cluster models} or \textit{slab models}. Slab models are technically periodic (unlike an amorphous solid), but they eliminate the artificial boundaries and capping atoms of cluster models.\cite{150} Cluster models are created by “carving out” a small portion of the bulk material as a model for the active site and its surroundings.\cite{151,152} Examples of (a) a small cluster model, and (b) a slab model, both representing an isolated Mo(VI) site covalently attached to amorphous silica during ethene metathesis, are shown in Figure 8. Relatively small cluster models are more common in this type of \textit{ab initio} computation, because of the computational expense of modeling catalytic cycles in larger systems with high-accuracy methods such as MP2,\cite{153} CCSD(T),\cite{154} the random phase approximation,\cite{155} or DFT with hybrid exchange-correlation functionals.\cite{156,157} For insulating materials, in which the local electronic structure is only slightly perturbed by the bulk material, the cluster modeling approach can be appropriate. Fortunately, many amorphous oxide supports and dispersed metal oxide and metal cluster phases fulfill this criterion.

![Figure 8](image.png)

Figure 8. (a) A small cluster model, and (b) a slab model, both representing a molybdenacyclobutane attached to amorphous silica during ethene metathesis. For the cluster model, the positions of the atoms at the periphery (far from the active site) are typically fixed in chemically plausible locations to give the model rigidity and thus solid-like character (O = red; Mo = pink; Si = yellow; H = white; C = teal; F = light blue). Adapted from Ref. 158, with permission from the American Chemical Society.

For cluster models based on crystalline materials such as zeolites, peripheral atoms (i.e., those located at the edge of a cluster model) are usually constrained (fixed) in their crystallographic positions. By contrast, there is no general rule for placement of peripheral atoms in cluster models for amorphous materials. Leaving them unconstrained may make the model too flexible.\cite{153,159} Fixing the peripheral atoms of small clusters results in artificially stiff systems. The locations of the fixed peripheral atoms, as well as choice of terminating group, can strongly influence catalyst site properties.\cite{59} Various terminating groups can be selected to mimic the extended structure or to simplify the calculations, with typical choices being OH,\cite{159} F,\cite{89,160} or H.\cite{58} For an oxide support, F is too electronegative whereas H is too electropositive; OH termination can result in unrealistic hydrogen bonding.

An assumption that is implicit but usually not acknowledged in this approach is that cluster models represent “important” catalyst sites (i.e., those that are sufficiently active and abundant to contribute significantly to the observed activity). For example, incompletely condensed silsesquioxanes with structures based on known homogeneous silica-based compounds are commonly employed cluster models that approximate various hydroxyl-terminated sites of amorphous silica, Figure 9.\cite{153,161,162} However, such silsesquioxanes are highly convex, and the siloxane ring size is typically restricted to just eight members (i.e., a 4-ring).\cite{163} The silsesquioxanes are less ideal as model systems of amorphous materials compared to larger cluster models (carved from amorphous slabs) or slab models, because of their limited ability to reproduce the structural diversity and reactivity of amorphous systems.

![Figure 9](image.png)

Figure 9. Incompletely condensed silsesquioxanes (upper and middle rows) and the surface silanol and siloxane sites they are intended to model (lower row). We note that vicinal silanol pairs (located on silicon atoms separated by a single siloxane bridge as depicted in the lower left structure) are not generally in a way that allows them to engage in mutual hydrogen-bonding,\cite{154} and that the silsesquioxanes I and II do not actually contain vicinal silanols according to this definition. Adapted from Ref. 163, with permission from the American Chemical Society.

Recently, some of us advocated the use of minimal cluster models (i.e., models that make very limited assumptions about the local structure of the catalyst site by including only structural features that can be justified by spectroscopic techniques).\cite{59,165} The idea is that specific structural assumptions required for building large/advanced cluster
models could hinder elucidation of general structure-property relationships. Moreover, the results obtained may depend strongly on the structural assumptions of the larger cluster model. Instead, small models may be better at revealing key local structural features that impart heterogeneity to the reactivity of the active sites. However, small cluster models neglect important longer-range structural features present in periodic slab models, and hence may not capture all the diversity of an amorphous material.144,158 Use of several medium-sized cluster models generated from a larger amorphous model may begin to address this limitation;80,146,166 however, statistical analysis indicates that the number of required models to reliably predict reactivities is quite large (Section 3.3).

Periodic slab models can overcome some of the limitations of finite-sized cluster models.158 Such slab models naturally incorporate long-range electronic and geometric effects, which can be important for accurate predictions of the bulk and surface properties of many solids. Many studies compare the accuracy of computed energies, vibrational frequencies, and other physicochemical properties obtained from periodic and cluster calculations.150,167-169 Quantitative results depend on the type and size of the support model, although qualitative trends for periodic slab and cluster models usually remain the same.

Slab models of crystalline materials are routinely used as surrogates for amorphous supports; for example, β-cristobalite is used as a proxy for silica.176 However, amorphous surface models generated from crystal facets are inadequate to capture the diversity of site environments in amorphous materials. Another approach is to generate amorphous surface models by carving surfaces from melted glasses determined on the basis of molecular dynamics simulations.172-174 These surfaces contain siloxane rings of varying size, but generating the experimental ring size distribution and silanol type distribution remains a challenge.

Periodic slab models have some drawbacks. Large supercells are required to minimize artificial interactions of adsorbates with their copies in periodic images, and for charged systems sophisticated correction schemes are needed to reach size convergence. To address these issues, aperiodic hybrid quantum mechanical/molecular mechanics (QM/MM) models, where a finite QM region is embedded in a surrounding MM environment, could be constructed.175 ONIOM methods, which are similar to traditional QM/MM approaches, could also be applied to enable studies involving larger system sizes.176

3.2. Improving Experimental Fidelity in Computational Models for Amorphous Catalytic Materials

The structure of a material must be known in considerable detail before its properties can be computed. Amorphous catalytic materials are challenging to model due to their lack of symmetry, and because many parameters influence their surface properties (e.g., surface atom coordination number, oxidation state, hydroxyl group type and density, and nanoparticle size and shape). Fortunately, models of amorphous materials and surfaces with atomistic detail and increased fidelity to the actual experimental preparation conditions are becoming available. A stochastic quenching approach initiating from random configurations has been used to model bulk amorphous Al\textsubscript{2}O\textsubscript{3},177 and kinetic Monte Carlo, classical molecular dynamics, and density-functional theory have generated models of MCM-41, an important catalyst support made of amorphous silica with periodic mesopores.171,178-182

The activated relaxation technique is also efficient for obtaining energy-minimized structures in amorphous materials.183,184 Reverse Monte Carlo approaches have generated bulk structures for amorphous materials,185 and disordered crystals,186 although the resulting models can have too much disorder if appropriate structural constraints are not applied (e.g., atom coordination numbers and bond angles).187

A promising slab model for amorphous silica-alumina was developed by simulated annealing of a Si(OH)\textsubscript{4} film epitaxially deposited on dehydrated γ-Al\textsubscript{2}O\textsubscript{3}(100).75,188 It may be more realistic than cluster models of aluminum-substituted silsesquioxanes employed to approximate surface sites in amorphous silica-alumina.105,189 such models necessarily cannot represent the diversity of site environments present in the material. In the slab model, the surface of amorphous silica-alumina was modeled as a function of water partial pressure and temperature via modeling the adsorption of water molecules and using ab initio thermodynamics. Various four- and five-coordinate Al3+ cations as well as several kinds of hydroxyls were present, enabling a systematic investigation of Lewis and Brønsted acid strengths.43,76 Interestingly, computed frequency shifts of adsorbed CO did not correlate directly with the Brønsted acidity of various hydroxyl groups on this SiO\textsubscript{2}-Al\textsubscript{2}O\textsubscript{3} model,41 although many experimental studies assume such a relationship. Future studies using this model to examine differences in metal sites interacting with the surface could shed light on the relationship between local heterogeneity in amorphous silica-alumina and the catalytic activity and selectivity of the supported metals.

The importance of the type, number, and distribution of hydroxyl groups on oxide surfaces has long been recognized in catalysis. Sustained efforts to understand the properties of surface hydroxyls in amorphous silicas, aluminas and silica-aluminas have benefited from computational modeling.171,188,190 For example, a model for the surface of silica was generated by carving a slab from bulk silica followed by capping all dangling bonds with hydroxyl groups.191 Although the initial version replicated the reported silanol content of fully hydroxylated silica, it did not attempt to predict the temperature dependence of this number. Amorphous silica surfaces with various degrees of hydroxylation were later developed by inducing incremental condensation of the closest next-neighbor pairs of H-bonded interacting hydroxyl groups.171

Developing computational models with hydroxyl populations that evolve with temperature as they are observed to do experimentally is still a challenge. Models are needed that reproduce the temperature-dependent abundance of hydrogen-bonded and non-hydrogen-bonded silanols on amorphous silica, as well as the fractions of vicinal pairs, geminal pairs, and isolated silanol groups. In this direction, one of the authors and his colleagues generated amorphous silica slab models with varying surface silanol
concentrations using a combination of empirical reactive molecular dynamics, DFT, and \textit{ab initio} thermodynamics.174 Although this work is a step forward in predicting total silanol numbers, Figure 10 shows that there are still discrepancies between the computed and experimental densities of single (often called isolated) silanols and proximal (often called vicinal) silanols at temperatures below 400 °C.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure10.png}
\caption{Predicted distribution of silanol groups on amorphous silica as a function of temperature ($P_{H_2O} = 10^{-3}$ bar) from the model of Ewing et al. (points), compared with average reported experimental values (lines). In the original work, silanol types were defined as follows: \textit{vicinal} (meaning proximal) silanols: pairs which exhibit mutual hydrogen-bonding, including geminal and non-geminal pairs; \textit{isolated} single silanols, \equivSiOH; \textit{free geminal}: silanediols, \equivSi(OH)$_2$ that do not engage in hydrogen-bonding. Adapted from Ref. 174, with permission from the American Chemical Society.}
\end{figure}

The silica slab model also fails to predict the decrease in the single (isolated) silanol population at temperatures above 600 °C. A possible explanation is the neglect of proton or silica migration in the model.192-193 A DFT study of amorphous silica models invoked silica migration (by successive water-assisted rupture and formation of siloxane bridges) at similar temperatures to further decrease the silanol number.194 However, under many conditions relevant to catalyst preparation (low water vapor pressure in vacuum or in a dry, inert atmosphere), this mechanism may not be the correct explanation, except in the case of the most highly strained rings. If trace water could readily catalyze ring opening of moderately strained or unstrained rings, then the hydroxyl groups on silica would migrate, and condense, at moderate temperatures. However, even when the silica starts to melt at 1200 °C, a significant number of hydroxyl groups persist.195-196 This strongly suggests that the hydroxyl groups are not mobile, and that ring opening/migration is not important at temperatures relevant to catalysis (below 1200 °C). An alternative explanation arises from differences in the assignment of silanol types in experimental and computational studies. Spectroscopic evidence suggests that many non-hydrogen-bonded silanols are not truly isolated hydroxyl groups, but vicinal silanol pairs (located on silicon atoms separated by a single siloxane bridge) that condense only at temperatures in excess of 600 °C to give highly strained Si$_2$O$_2$ rings.164 In many experimental studies, all non-hydrogen-bonded silanols are designated “isolated”, even though neither vicinal nor geminal silanol pairs engage in intra-pair hydrogen bonding, and both have O-H stretching frequencies that are indistinguishable from truly isolated silanols.164,197-198 Other experiments have provided evidence for the persistence of a substantial vicinal silanol population even on highly dehydroxylated silicas, via their reaction with GaMe$_3$.199

Because of the many types of heterogeneity in local surface structures, modeling support effects requires the time-consuming calculation of a broad distribution of catalyst-support interactions. Recently, a hybrid classical/quantum approach was developed to obtain fast predictions of nanoparticle-amorphous support interactions.44,199 For Pt nanoparticles on silica, one of the authors reported linear correlations for the particle adhesion energy and net charge as a function of the silanol density, nanoparticle size (Pt$_{13}$, Pt$_{55}$, Pt$_{150}$), and nanoparticle shape.199 An increase in silica pretreatment temperature weakens nanoparticle adhesion to the surface because fewer Pt-O bonds can be formed to surface silanols. Charge transfer from the Pt nanoparticle to silica is correlated with the number of Pt–O bonds, which cause electron depletion in Pt ions near the interface. Therefore, surface pretreatment temperature can be used to modify the nanoparticle-support interface, and thus nanoparticle stability and reactivity, on amorphous silica. Adsorbate binding for such systems is not accurately predicted either by studying nanoparticles in the gas phase or by modeling their interactions with crystalline silica surfaces.

In summary, computational and methodological advances have brought us closer to constructing atomically detailed models of amorphous surfaces, but quantitative accuracy remains elusive because of approximations in underlying electronic-structure theory (or force-field) approaches due to their computational expense (e.g., by using approximate exchange-correlation functionals in density-functional theory applications) and a lack of precise experimental results for comparison.

\subsection*{3.3. Statistical Assessment of Computational Predictions}

Since \textit{a priori} knowledge of the activation energy distribution is usually unavailable, computational investigations must rely on statistical sampling. When the average structural characteristics of multiple, smaller, amorphous silica clusters (72 atoms) were compared with those of larger models (1479 atoms),166 ten small cluster models were demonstrated to provide a good statistical sample of structural features consistent with larger simulated glass systems. By extension, we infer that a large number of cluster models will be needed to make predictions about macroscopic reaction rates on amorphous catalysts. Since rates depend exponentially on activation free energies, statistical averaging of results using cluster models will require many more models than does the averaging of structural features.

With advances in computing power, the slab model approach seems likely to dominate computational modeling efforts of amorphous catalytic materials soon due to its advantage over cluster modeling in describing flexible extended networks. Nonetheless, slab models still present difficulties for sampling the catalyst activation energy...
distribution to predict macroscopic rates. The issue has yet to be discussed widely in the catalysis literature. Even the most realistic slab models are still inherently small relative to the length scales of real materials, and consequently may not contain a representative sampling of the active sites. For instance, it is difficult to model a catalyst in which 1% of the potential sites are active when the computational model contains only a few such sites. Unfortunately, sampling the full distribution of active sites will be difficult for some time to come, because: (1) first-principles calculations remain prohibitively expensive to use with Monte Carlo sampling methods, and (2) the active site distribution is unknown and also likely to be non-Boltzmann as a result of its quenched disorder.\(^8\)

Constable hypothesized an exponential distribution of activation energies for a reaction taking place on the non-uniform surface of a catalyst.\(^{200}\) He further assumed that there is a minimum value for the activation energy, below which no sites exist. The effective value of the activation energy for a particular reaction differs from this minimum value. Recently, some of us presented a statistical framework showing how the distribution of activation energies could in principle be obtained if the distribution of active site structures were known, and how the effective fraction of active sites could be predicted computationally for a given set of reaction conditions.\(^9\) The statistical framework demonstrates that kinetic predictions require information about the low-energy tail of the activation energy distribution, since reactivity is dominated by contributions from the extreme members of the active site distribution. In addition, while the framework assumed a fixed active site distribution invariant to reaction conditions, the distribution could evolve over time and depend on reaction conditions. Ideally, the framework will incorporate time-dependent population balance equations.

Averaging over the activities of all catalyst sites gives the macroscopic rate; however, in both computational and single-molecule spectroscopy studies, the number of catalytic sites sampled is limited. This leads to the following question: when is the number of independent samples of sites \(N\) large enough to engender confidence in the predicted rate? A small variance in the activation energy \(E_a\) (or the Gibbs activation free energy, within the context of transition state theory) leads to an enormous (relative) variance in reaction rates at individual sites. Even if prefactors are essentially independent of site characteristics, an accurate estimate of the rate requires a sample large enough to accurately estimate \(\langle e^{-\beta E_a}\rangle\). Here \(\beta = 1/k_BT\), and \(\langle \ldots \rangle\) denotes an average over the ensemble of sites. The central limit theorem (CLT) states that the sample size \(N\) should satisfy the following criterion:

\[
N + 1 \gg \frac{1 + 2(\delta \beta E_a)^2 - \frac{4}{3}(\delta \beta E_a)^3 + \ldots}{1 + (\delta \beta E_a)^2 - \frac{1}{4}(\delta \beta E_a)^3 + \ldots}
\]

where \(\delta \beta E_a \equiv \beta E_a - \langle \beta E_a \rangle\). Examples in the literature suggest that some activation energy distributions have \(\langle (\delta \beta E_a)^2 \rangle \gg 1, \, \beta\). Therefore, high-order moments will likely be important, and consequently the required value of \(N\) may be in the thousands. Clearly, \textit{ab initio} estimates of the observed kinetics, even with the most comprehensive amorphous catalyst models, will require clever sampling methods.

4. OPPORTUNITIES FOR ADVANCES THROUGH JOINT EXPERIMENTAL-COMPUTATIONAL STUDIES

Amorphous catalysts present formidable challenges for active site determination, because their inhomogeneity can be manifested on multiple length scales. Challenges in experimental characterization can be partially alleviated by close interaction with theoretical investigations. This approach has yielded many successes in enhancing understanding of elementary reactions and catalytic processes observed in ultra-high vacuum surface science experiments. Developments in surface characterization techniques and in computational modeling that are now advancing our understanding of amorphous catalytic materials are discussed in the following sections.

4.1. Developing Improved Models of Amorphous Catalytic Materials. Until recently, efforts to generate computational models of amorphous catalytic materials were often based on questionable approximations; consequently, many predictions were unreliable. Fortunately, advances in electronic-structure theory codes, computing power, simulation methodologies, and experimental characterization techniques are reducing the need for such approximations. For example, improvements in DFT exchange-correlation functionals, which treat the well-known “delocalization” and “static correlation” errors more accurately,\(^{201}\) are bringing energy predictions closer to chemical accuracy (less than 1 kcal/mol). Methodological developments (e.g., reactive force fields\(^{202}\) and machine-learned potentials\(^{203,204}\)) are promising the capability to model amorphous systems with larger sizes and increased complexity. High-throughput calculations and big-data analytics (e.g., compressed sensing, subgroup discovery, and kernel ridge regression) approaches could help discover insights into amorphous catalysts, for instance, by finding geometric and electronic descriptors that predict activity or selectivity,\(^{207-212}\) facilitating robust curation of large experimental and computational data sets via outlier detection,\(^{213-214}\) optimizing proposed catalyst reaction networks and quantifying uncertainty,\(^{215}\) and accelerating the discovery of reaction mechanisms.\(^{216-217}\) Developments in online materials databases are also playing an important role in catalyst discovery, by enabling data storage for later comparison with other studies as well as for repurposing.\(^{218-221}\)

Benchmarking theoretical predictions against careful experimental measurements is also essential, because it quickly identifies problems with underlying assumptions and
enables the attribution of error bars to predictions.222 Key metrics for comparison include thermodynamic properties (e.g., reaction enthalpies, reaction entropies, and reaction free energies), kinetic properties (e.g., activation enthalpies, activation entropies, free energy barriers, and macroscopic rate predictions), as well as spectroscopic signals (e.g., IR, NMR, and EXAFS), Figure 11. Computed reaction pathways should be evaluated for their dependence on local surface heterogeneity. Rate theories such as harmonic transition state theory223 can be used to predict rate constants and trends in kinetics, thereby evaluating proposed rate laws for mechanistic hypotheses testing.224-225 The activation enthalpy and entropy of the rate-determining step of a catalytic reaction can be predicted by performing an Eyring analysis of computed rate constants, for direct comparison with experimental activation parameters.226-227 Although using energies obtained by DFT is insufficient to predict absolute rates with high accuracy, smaller discrepancies compared with experiment should be obtained when estimating selectivities and relative abundances due to error cancellation (because they involve ratios of rates).92

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure11.png}
\caption{Ab initio computations for catalytic mechanisms (circle) should be vetted against measured thermodynamic, kinetic and spectroscopic data (shaded squares). Abbreviations: KIE, kinetic isotope effect; PSS, pseudo-steady state; QM, quantum mechanical; TDDFT, time-dependent DFT; GW-BSE, Green’s function Bethe-Salpeter equation; TST, transition-state theory; Rxn, reaction.}
\end{figure}

When computed quantities such as thermodynamic parameters, activation parameters, relative abundances, and kinetic isotope effects disagree with experimental observations and trends, then mechanistic hypotheses may require further scrutiny. In some cases, the computational model may be incorrect or insufficient. An unacceptable level of discrepancy can be estimated from typical errors generated by modern DFT hybrid exchange-correlation functionals of 10 - 30 kJ/mol for reaction free energies and activation free energies in non-charged systems at gas, liquid, and gas-solid interfaces.238-239 Larger errors are expected for systems involving solid-liquid or charged interfaces, due to difficulty in modeling the solvent environment, describing the electronic-structure of charged species (due to delocalization error), and estimating partition functions. DFT computations should be benchmarked against more accurate electronic-structure methods whenever possible to have a better understanding of the magnitude and sources of errors for different classes of systems. Some DFT exchange-correlation functionals even provide computational error estimates using Bayesian statistics.230,231

4.2. Atomic-level Characterization of Individual Sites.

Under operating conditions, catalysts undergo dynamic structural transformations to form active sites, underscoring the need to examine catalysts in real time.27,232-234 \textit{Operando} methods refer to characterizing a catalytic material during its exposure to realistic reaction conditions, and while its catalytic activity and selectivity are simultaneously measured.235-236 When this powerful approach generates spectra with spatial and time resolution, it can elucidate the evolution of both active sites and reaction intermediates. For example, an electron paramagnetic resonance and DRUV-vis study by one of the authors showed that the Cr(II)/SiO\textsubscript{2} precursor state of the Phillips catalyst is immediately oxidized to Cr(III)/SiO\textsubscript{2} upon exposure to ethene.237 As another example, a recent \textit{operando} Raman, XANES, and EXAFS analysis of an amorphous cobalt sulfide electrocatalyst for H\textsubscript{2} evolution indicated that it transforms into highly active CoS\textsubscript{2}-like molecular clusters in which cobalt is octahedrally-coordinated by sulfur under cathodic polarization.238

Recent advances in characterization methods are giving researchers insight into the dynamic roles of the support under reaction conditions. For example, combined \textit{in situ} transmission electron microscopy and DFT modeling enabled an atomically detailed description of oxide overlayer formation on Pd/TiO\textsubscript{2}.239 Amorphous TiO\textsubscript{2} layers formed on Pd nanoparticles at low temperatures, followed by their crystallization into mono- or bilayer structures depending on the reaction conditions. Another study demonstrated that HCO\textsubscript{3}- adsorbes on Nb\textsubscript{2}O\textsubscript{5}- and TiO\textsubscript{2}-supported Rh nanoparticle catalysts can drive oxygen vacancy formation in the support and induce the formation of a porous amorphous oxide overlayer on the Rh nanoparticle, which locally modifies the selectivity and activity of the underlying Rh surface.124

Obtaining more detailed knowledge about these amorphous layers and other amorphous supports (e.g., the redox properties of amorphous Ce–Ti mixed oxides and amorphous CeO\textsubscript{2} for selective catalytic reduction of NO\textsubscript{x} with NH\textsubscript{3})240 will create opportunities to tune the properties of these important families of catalysts. Comparison of \textit{in situ/operando} experiments using supported molecular complexes as active site models with first-principles computational modeling can lead to mechanistic understanding about catalysis by amorphous solids.241-243 The use of well-defined molecular complexes as catalyst components can aid in the development of structure-activity relationships. For example, two 13C NMR signals were observed in the spectrum of CH\textsubscript{3}ReO\textsubscript{3}/silica-alumina.103 A combination of mobility studies, selective grafting, and computational analysis was employed to understand the molecular complex associated with Brønsted and Lewis acid sites; however, the latter proved to be the sole source of the active sites in olefin metathesis. Isolated Co(II) species on silica
were synthesized by grafting a cobalt silanolate precursor, followed by thermal treatment. Their reactivities were investigated using kinetic and in situ spectroscopic studies to probe the mechanisms of propane dehydrogenation, hydrogenation of propene, and the trimethination of terminal alkynes.244 The reactions were suggested to occur via a common mechanism involving heterolytic C–H or H–H activation on a Co(II)–O bond, consistent with DFT calculations by Hu and coworkers.245 In another example, a series of molecular Ga model complexes and grafted surface organometallic Ga species were characterized using K-edge XANES.246 During alkane dehydrogenation, it was suggested that C–H bond activation occurs on Ga3+ active sites by a non-redox mechanism, involving gallium alkyl and hydride intermediates.

5. PROSPECTS

Although amorphous catalysts are well-established in chemical technology, they represent an emerging area for fundamental research in catalysis. In addition to well-known intrinsically amorphous materials, amorphous phases can also form from crystalline phases under reaction conditions. Advances in characterizing the dynamic behavior of both types of catalysts in situ and operando will likely lead to more examples and a better understanding of their consequences for reactivity. One such effect is subtle structural variability in dispersed metal ion sites which can lead to substantial changes in the rates of key elementary reaction steps, resulting in temperature-dependent changes in contributions to reactivity and stability. New approaches to describe this behavior accurately will require more than “single-site” models based on inflexible crystalline frameworks or rigid clusters, however “advanced”. Until recently considered intractable, the problems of characterizing amorphous catalytic materials and understanding their heterogeneity are becoming solvable with powerful new methods that combine sophisticated and predictive models with dynamic experimental measurements.

AUTHOR INFORMATION

Corresponding Authors
*B.R.G.: tel, +1 734 764-3627; e-mail, bgoldsm@umich.edu
*S.L.S.: tel, +1 805 893-5606; e-mail, sscott@engineering.ucsb.edu

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

SLS and BP acknowledge support from the Catalysis Science Initiative of the U.S. Department of Energy (DOE), Basic Energy Sciences (BES) via grant DE-FG02-03ER15467. BCG acknowledges support from DOE BES via grant DE-FG02-04ER15513. JKU acknowledges support from DOE BES via grant DE-FG02-10ER16165. BRG acknowledges support from the Alexander von Humboldt-Foundation via a Postdoctoral Fellowship. BRG also thanks Markus Heyde at the Fritz Haber Institute of the Max Planck Society for fruitful discussions. BP thanks Richard Sear for stimulating discussions.

REFERENCES

Table of Contents Image

Amorphous oxides as catalyst components

Metal ions atomically dispersed on amorphous supports

Metal clusters on amorphous supports

SiO₂

dloxoMo(VI) / SiO₂

Pt₃⁺ / SiO₂
Figure 1. Schematic of possible near-surface structures on a crystalline Co$_3$O$_4$ core under electrochemical conditions during the oxygen evolution reaction. (a) At potentials below Co redox features, Co$_3$O$_4$ exists in a healed resting state, in which reduced Co sites caused by defects in the near-surface are oxidized to Co$_3$O$_4$. (b) At elevated anodic electrode potentials, the Co$_3$O$_4$ surface is transformed into CoO$_x$(OH)$_y$, leading to reversible amorphization of the active sub-nanometer-thick shell. This CoO$_x$(OH)$_y$ shell consists of di-µ-oxo-bridged Co$^{3+}/^{4+}$ ions with random site occupancy in the ideal cubic close-packed O$^{2-}$ lattice. Adapted from Ref. 30, with permission from Nature Publishing Group.
Figure 2. Illustrative examples of three important classes of amorphous catalytic materials: (a) *Amorphous oxides*: Silica-alumina, represented by a slab model with various exposed hydroxyl groups and embedded aluminum centers (O = red; Al = pink; Si = yellow; H = white). Numbers denote distinct types of Brønsted acid sites. Red labels indicate sites capable of protonating lutidine. (b) *Metal ions atomically dispersed on amorphous supports*: A slab model for an isolated dioxoMo(VI) site covalently attached to amorphous silica, generated by DFT geometry optimization (O = red; Mo = blue; Si = yellow; H = white). (c) *Supported metal clusters*: Model of a Pt$_{13}$ cluster interacting with amorphous silica, showing the charge depletion experienced by interfacial Pt atoms (red) interacting with surface hydroxyl groups, and their electron-rich Pt neighbors (blue). Grey-colored Pt atoms are approximately neutral. Figure 2a is from Ref. 43, with permission from the Royal Society of Chemistry; Figure 2c is adapted from Ref. 44, with permission from the American Chemical Society.
Figure 3. (a) Atomic-resolution STM image of an amorphous silica bilayer on Ru(0001). Silicon atoms appear at the center of SiO$_3$ triangles that correspond to SiO$_4$ tetrahedra in three dimensions. In the lower right corner of the image, atomic positions are denoted with green (Si) and red (O) spheres. (b) Ring size distribution of the amorphous silica bilayer determined by STM (histogram of 317 rings, partially displayed in Figure 3a). The red dashed curve is a log-normal fit. Adapted from Ref. 54, with permission from Elsevier.
Figure 4. (a) The bridging hydroxyl group (Si-(OH)-Al) is responsible for the strong Brønsted acidity of zeolites. (b) The high Brønsted acid strength of silica-aluminas is suggested to arise when terminal Si-OH groups are located near coordinatively-unsaturated Al$^{3+}$ sites, which stabilize the corresponding silanolate anions.

226x86mm (96 x 96 DPI)
Figure 5. Schematic of an isolated metal ion M^{n+}, with molecular ligands L derived from a precursor metal complex, attached via surface oxygen ligands to an amorphous oxide support with cations A^{m+}. Adapted from Ref. 8, with permission from AIP Publishing.

$L = $ Ligands
- carbene, carbyne, oxo,
- amido, alkoxo, imido,
- hydrido, alkyl...

$M = $ Transition metal ion

$A = $ Cation component of the amorphous oxide
Figure 6. A proposed Phillips catalyst initiation mechanism requiring flexibility in the amorphous silica support. Ethene oxidative addition followed by homolytic bond cleavage on isolated Cr(II)/SiO$_2$ precursor sites yields activated monoalkylchromium(III) sites. The homolysis rate is promoted by the interaction of siloxane ligands with Cr, but ethene oxidative addition is faster when the siloxanes dissociate. Structures in red show a possible path for fast site activation involving reversible coordination of hemilabile siloxane ligands. Adapted from Ref. 96, with permission from the American Chemical Society.
Figure 7. Proposed structures, with observed NMR chemical shifts, for intact MTO grafted onto SiO$_2$-Al$_2$O$_3$ (A),103 and γ-Al$_2$O$_3$ (B),106,112 as well as a proposed methylene-bridged structure on γ-Al$_2$O$_3$ (C).106,112 Recently, Gallo et al. assigned NMR signals for MTO interacting with unchlorinated (D) and chlorinated (E) regions of the Cl-Al$_2$O$_3$ surface.107 Naturally, the coordination numbers and geometries of the support Al atoms are variable, leading to considerable heterogeneity in the grafted sites. Adapted from Ref. 107, with permission from the American Chemical Society.
Figure 8. (a) A small cluster model, and (b) a slab model, both representing a molybdenacyclobutane attached to amorphous silica during ethene metathesis. For the cluster model, the positions of the atoms at the periphery (far from the active site) are typically fixed in chemically plausible locations to give the model rigidity and thus solid-like character (O = red; Mo = pink; Si = yellow; H = white; C = teal; F = light blue).

Adapted from Ref. 158, with permission from the American Chemical Society.
Figure 9. Incompletely condensed silsesquioxanes (upper and middle rows) and the surface silanol and siloxane sites they are intended to model (lower row). We note that vicinal silanol pairs (located on silicon atoms separated by a single siloxane bridge as depicted in the lower left structure) are not generally in a way that allows them to engage in mutual hydrogen-bonding, and that the silsesquioxanes I and II do not actually contain vicinal silanols according to this definition. Adapted from Ref. 163, with permission from the American Chemical Society.

104x90mm (300 x 300 DPI)
Figure 10. Predicted distribution of silanol groups on amorphous silica as a function of temperature ($P_{H_2O} = 10^{-6}$ bar) from the model of Ewing et al. (points), compared with average reported experimental values (lines). In the original work, silanol types were defined as follows: *vicinal* (meaning proximal) silanols: pairs which exhibit mutual hydrogen-bonding, including geminal and non-geminal pairs; *isolated* single silanols, ≡SiOH; *free geminal*: silanediols, =Si(OH)$_2$ that do not engage in hydrogen-bonding. Adapted from Ref. 174, with permission from the American Chemical Society.
Figure 11. *Ab initio* computations for catalytic mechanisms (circle) should be vetted against measured thermodynamic, kinetic and spectroscopic data (shaded squares). Abbreviations: KIE, kinetic isotope effect; PSS, pseudo-steady state; QM, quantum mechanical; TDDFT, time-dependent DFT; GW-BSE, Green’s function Bethe-Salpeter equation; TST, transition-state theory; Rxn, reaction.