Wave-function inspired density functional applied to the $\text{H}_2^+/\text{H}_2^+$ challenge

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2016 New J. Phys. 18 073026

(http://iopscience.iop.org/1367-2630/18/7/073026)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
This content was downloaded by: igorzhy
IP Address: 79.201.115.90
This content was downloaded on 12/07/2016 at 16:46

Please note that terms and conditions apply.
Wave-function inspired density functional applied to the H_2/H_2^+ challenge

Igor Ying Zhang, Patrick Rinke and Matthias Scheffler

1 Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
2 Department of Applied Physics, Aalto University, PO Box 11100, Aalto FI-00076, Finland
3 Department of Chemistry and Biochemistry and Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106-5050, USA

E-mail: zhang@fhi-berlin.mpg.de

Keywords: molecular dissociation, adiabatic-connetion path, density-functional theory, near-degeneracy correlation

Abstract

We start from the Bethe–Goldstone equation (BGE) to derive a simple orbital-dependent correlation functional—BGE2—which terminates the BGE expansion at the second-order, but retains the self-consistent coupling of electron-pair correlations. We demonstrate that BGE2 is size consistent and one-electron ‘self-correlation’ free. The electron-pair correlation coupling ensures the correct H_2 dissociation limit and gives a finite correlation energy for any system even if it has no energy gap. BGE2 provides a good description of both H_2 and H_2^+ dissociation, which is regarded as a great challenge in density functional theory (DFT). We illustrate the behavior of BGE2 analytically by considering H_2 in a minimal basis. Our analysis shows that BGE2 captures essential features of the adiabatic connection path that current state-of-the-art DFT approximations do not.

1. Introduction

Density-functional theory (DFT) is now widely applied in physics, chemistry, materials science and biology. This success comes from the availability of suitable approximations for the exchange–correlation (xc) functional—the only quantity that is unknown in Kohn–Sham (KS) DFT. However, despite this unmatched success and the ubiquitous application of common functionals, all currently available functionals suffer from certain notorious limitations. For example, all existing functionals fail to correctly describe the dissociations of both H_2^+ and H_2, two very simple molecules [1–5]. Solving the H_2^+/H_2 dissociation problem will not only lead to a conceptual understanding of why current functionals fail, but also offer potential pathways to develop better functionals, and has thus attracted increasing attention [2–19].

A viable approach in functional development is to learn from wave-function theory in constructing nonlocal correlation functionals that involve unoccupied KS orbitals and thus stand on the fifth (and currently highest) rung of Perdew’s Jacob’s ladder [7]. A prominent example is second-order Gørling–Levy (GL) perturbation theory (GL2) [20] that is closely related to second-order Møller–Plesset (MP) perturbation theory (MP2) [21–23] in wave-function theory 4. In fact, even MP2 can be viewed as an implicit density functional by means of the adiabatic connection approach [20, 24, 25]. An important feature of 2nd-order perturbation theories (PT2) such as GL2 and MP2 is that they are one-electron ‘self-correlation’ free [1, 5], i.e. the correlation is zero for one-electron systems, and that they are size consistent (i.e. if the system is fragmented into two parts, the total energy becomes the sum of the two fragments) [26, 27]. Furthermore, PT2 is fully non-local and captures the correct R^{-6} decay behaviour at long distances, which is essential to provide an accurate description of weak interactions.

GL2 differs from MP2 in the employed orbitals. While MP2 is formulated in terms of Hartree–Fock (HF) orbitals, GL is based on KS orbitals. Therefore, the single-excitation contribution of second-order perturbation theory is nonzero in GL2. In most of current investigations based on GL2 [6, 7, 30, 31, 36, 106], this single-excitation contribution is not taken into account. In this paper, we refer to second-order perturbation methods that use the KS orbitals but take only double and not single excitations into account as PT2. We leave the inclusion of the single-excitation, which are important for weak interactions [51], to future work.
Therefore, PT2 correlation is an ideal building block for fifth-level density functionals, following Perdew’s nomenclature. This feature has been exploited in a range of promising double-hybrid functionals [28–36], which linearly mix generalized gradient approximations, e.g., BLYP [37, 38] or PBE [39], with both exact exchange and PT2 correlation. The admixture of semi-local exchange and correlation can be viewed as an efficient yet semi-empirical way to take higher-order perturbative contributions into account that would go beyond PT2 [40, 41]. These double-hybrid functionals provide a satisfactory accuracy for various chemical interactions, but they fail for systems with small KS energy gaps, e.g., heavily-stretched H₂ and metallic systems. In such systems, two or more determinants become degenerate in energy and mean-field theories that rely on a single reference determinant such as HF or KS–DFT break down. Also, perturbation theory diverges at any order, making it essential to find an appropriate resummation. Seidl, Perdew and Kurth suggested an empirical adiabatic-connection (AC) model [20, 24, 25], namely interaction-strength interpolation [7], to implicitly resum the perturbation expansion by using only exact exchange, PT2 correlation and an explicit density functional derived from the point charge plus continuum model in the strong-interaction limit where the coupling constant parameter goes to infinity [42]. Frequently, the analytic dependence on the coupling constant is approximated by a Padé formula, whose parameters can be determined either empirically on theoretical grounds [6, 10].

Recently, an explicit density functional in the strong-interaction limit was suggested. It can be constructed from so-called co-motion functions and captures fully non-local effects in the strong-interaction limit [43].

An example of a successful resummation is the particle–hole random-phase approximation (RPA), in which an infinite number of ‘ring diagrams’ is summed [8, 44–49]. This has been widely recognized as key to make RPA applicable to small-gap or metallic systems. The RPA method provides the correct H₂ dissociation limit [2, 15]. Unfortunately, it suffers from a heavy ‘self-correlation’ error for one-electron systems [1–5], and thus yields an even worse H₂ dissociation behaviour than conventional density functionals. In addition, RPA exhibits an incorrect repulsive ‘bump’ at intermediate H₂ bond distances. These deficiencies have in the past been attributed to a lack of self-consistency in RPA [2, 5], which was disproved by actual self-consistent calculations [15, 50].

Another widely accepted hypothesis attributes these deficiencies to the lack of higher order diagrams and spurred considerable beyond-RPA developments in the past few years [3, 16, 18, 19, 51–56]. Other interesting developments in this realm include reduced density matrix theory [57] or self-consistent Green’s function frameworks [15, 58]. A successful beyond-RPA method is renormalized second-order perturbation theory (rPT2), which adds an infinite summation of the second-order exchange diagram of PT2 (termed second order screened exchange (SOSEX)) [4, 59–61] and renormalized single-excitation (rSE) [51, 62] diagrams on top of RPA [16]. rPT2 does not diverge for small-gap systems and is free of one-electron ‘self-correlation’. It thus provides the correct description of one-electron systems including H₂⁺ and individual H atoms, but fails for H₂ dissociation if breaking spin symmetry is not allowed [3, 16, 52 and also below]. Further improvements have been stipulated in the context of the couple-cluster (CC) theory [18, 52–56] or the Bethe–Salpeter equation [3, 19, 22]. These methods, although proposed from different perspectives, can all be interpreted as attempts to explicitly introduce more ‘selective summations to infinite order’ in the density functional perturbation framework. Even though these methods improve over standard RPA schemes with varying degrees of success for the H₂⁺ /H₂ dissociation problem, no improvement to date removes the ‘bump’ while simultaneously yielding the correct dissociation limit for H₂⁺ and H₂, indicating the difficulty of understanding this problem in any perturbative framework. In this context, Aggelen et al recently proposed the particle–particle random phase approximation (pp–RPA). It describes pairing matrix fluctuations by the particle–particle (pp)-propagator, and can also be viewed as a CC doubles (CCD) restricted to ladder diagrams [55, 56]. The pp-RPA captures the dissociation limit in H₂ and eliminates the ‘self-correlation’ error in H₂⁺, but results in a more repulsive ‘bump’ than standard RPA [55].

In this paper, we lay the ground for an efficient orbital-dependent correlation functional based on the Bethe–Goldstone equation (BGE) [63], which is derived from the correlation of two particles [22]. As the BGE is the simplest approximation which provides the exact solution for one- and two-electron systems, it is a good starting point to understand the aforementioned H₂⁺ /H₂ dissociation challenge. In section 2, we formulate the BGE in the context of DFT through the adiabatic connection approach. In contrast to the normal resummation strategy in density functional perturbation theory, we propose a new correlation functional by terminating the BGE expansion at the second order (BGE2). As shown in section 3, this BGE2 approximation gives a good description of both H₂⁺ and H₂ dissociations, without requiring any higher order connected Goldstone diagrams that are commonly believed to be necessary. We further analyse BGE2 analytically in the minimal basis H₂ model. We show that BGE2 is size-extensive and free of one-electron ‘self-correlation’.
2. BGE in density functional theory (DFT)

In the AC approach of DFT [20, 24, 25], the non-interacting KS system is connected to the physical system by an adiabatic path. The density \(n \) along the path is fixed to the exact ground-state density. The Hamiltonian for a family of partially interacting \(N \)-electron systems in this path is controlled by a coupling-constant parameter \(\lambda \) (atomic units are used hereafter unless stated otherwise):

\[
\hat{H}_\lambda = \hat{H}_0 + \lambda (\hat{V}_{\text{ee}} - \hat{v}_\lambda / \lambda) = \hat{H}_0 + \lambda \Delta \lambda.
\]

(1)

Here, \(\hat{H}_0 \) is the Hamiltonian of the non-interacting KS system

\[
\hat{H}_0 = \sum_i \left[-\frac{1}{2} \nabla_i^2 + v_i(r_i) \right],
\]

(2)

where \(v_i(r) \) is a multiplicative one-electron potential

\[
v_i(r) = v_{\text{ext}}(r) + v_{\text{H}}(r) + v_x(r) + v_c(r)
\]

(3)

comprising the external potential \((v_{\text{ext}}) \) arising from the Coulomb interaction between the electrons and the nuclei, the Hartree potential \((v_{\text{H}}) \), and the exchange \((v_x)\) and correlation \((v_c)\) potential. The operator \(\hat{v}_\lambda \) is also multiplicative and constrained to satisfy \(\hat{v}_0 = 0 \) and \(\hat{v}_\lambda = \hat{v}_\lambda + \hat{v}_\lambda \). Thus, \(\hat{H}_{0,\lambda} = \hat{H}_\lambda \), while \(\hat{H}_\lambda \) is the Hamiltonian of the fully interacting system. From the perspective of many-body perturbation theory, \(\Delta \lambda = \hat{v}_{\lambda} - \hat{v}_\lambda / \lambda \) is a perturbation of the non-interaction KS Hamiltonian, which does not change the ground-state density \(n \). By using coordinate scaling [20, 25, 64], it was shown that

\[
\hat{v}_\lambda / \lambda = \sum_i v_{\text{H}}(r_i) + v_x(r_i) + \lambda \frac{\delta E_{\lambda}[n_{\lambda}]}{\delta n_{\lambda}(r_i)}, \quad \alpha = \lambda^{-1}, \quad v_{\lambda}(r_i, \alpha) = \frac{\delta E_{\lambda}[n_{\lambda}]}{\delta n_{\lambda}(r_i)},
\]

(4)

where \(n_{\lambda}(x, y, z) = \alpha^n(n_{\alpha x}, n_{\alpha y}, n_{\alpha z}) \), and \(v_{\lambda}(r_i, \alpha) \) is the correlation potential of the scaled correlation energy with respect to the normal density \(n \).

In the AC framework [20, 24, 25], the xc functional can be interpreted as the coupling-constant integration

\[
E_{\text{xc}}^{\lambda}[n] = \int_0^\lambda d\alpha \frac{\partial E_{\text{xc}}^{\lambda}[n]}{\partial \alpha} = \int_0^\lambda d\lambda V_{\text{xc}}^{\lambda},
\]

(5)

where \(E_{\text{xc}}^{\lambda}[n] \) is the xc functional for a given coupling-constant \(\lambda \) [65]

\[
E_{\text{xc}}^{\lambda}[n] = \langle \Psi_{\alpha}^{\lambda} | \hat{T} + \lambda \hat{V}_{\text{ee}} \rangle_{\Psi_{\alpha}^{\lambda}} - \langle \Phi_0 | \hat{T} | \Phi_0 \rangle - \lambda E_{\text{H}}[n].
\]

(6)

\(V_{\text{xc}}^{\lambda} \) is the corresponding xc potential for a given coupling constant \(\lambda \). We can further define the exchange \(E_{\text{ex}}^{\lambda}[n] \) and correlation \(E_{\text{c}}^{\lambda}[n] \) components separately

\[
E_{\text{ex}}^{\lambda}[n] = \lambda \langle \Phi_0 | \hat{V}_{\text{ee}} | \Phi_0 \rangle - E_{\text{H}}[n] = \lambda E_{\text{ex}}[n],
\]

\[
E_{\text{c}}^{\lambda}[n] = \langle \Psi_{\alpha}^{\lambda} | \hat{H}_C | \Psi_{\alpha}^{\lambda} \rangle - \langle \Phi_0 | \hat{H}_C | \Phi_0 \rangle.
\]

(7)

Here \(\Psi_{\alpha}^{\lambda} \) is the ground-state wave-function on the AC path with the coupling constant \(\lambda \), which gives the same ground-state density \(n \) as the physical system (\(\lambda = 1 \)). \(\Psi_{\alpha}^{0} = \Phi_0 \) is thus the ground-state wave-function of the non-interacting KS system. \(E_{\text{H}}[n] \) is the Hartree energy

\[
E_{\text{H}}[n] = \frac{1}{2} \int dr_1 dr_2 n(r_1)n(r_2) |r_1 - r_2|,
\]

(8)

which is an explicit functional of the density. Immediately, we have \(V_{\text{xc}}^{\lambda} = E_{\text{ex}}^{\lambda}[n] \), as the exchange density functional \(E_{\text{ex}}^{\lambda}[n] \) defined in this manner is linear in the coupling constant \(\lambda \). And the corresponding Hartree potential \(v_{\text{H}} \) is written as

\[
\langle \phi_\alpha | v_{\text{H}} | \phi_\alpha \rangle = \sum_i \langle \phi_\alpha | \phi_i \rangle \langle \phi_i | v_{\text{H}} | \phi_\alpha \rangle
\]

(9)

with the definition of the two-electron four-center integral as

\[
\langle \phi_\lambda | \psi | \phi_\lambda \rangle = \int dr_1 dr_2 \frac{\phi_\lambda^*(r_1) \psi^*(r_2) \phi_\lambda(r_1) \psi(r_2)}{|r_1 - r_2|}.
\]

(10)

In contrast, it is in general not possible to obtain the exact \(E_{\text{ex}}^{\lambda}[n] \) for any \(\lambda = 0 \), since the electron–electron repulsion operator \(\hat{V}_{\text{ee}} \) appears explicitly in the Hamiltonian, and the ground-state wave-function \(\Psi_{\alpha}^{0} \) cannot be obtained exactly. This is also true for two-electron systems, although the ground-state wave-function is now just a simple electron-pair function.
As one of the motivations in this paper is to construct a functional which can provide an accurate description for both \(H_2 \) and \(H_2^* \) dissociations, we start from the BGE of \(\hat{H}_l \), which is derived from the correlation of two particles, and is thus the exact solution for one- and two-electron systems. The BGE explicitly solves the Schrödinger equation for each electron pair \(ab \) interacting through a perturbation \(\hat{H}_l(\lambda) \)

\[
[\hat{H}_l + \lambda \hat{H}_l(\lambda)] \Psi_{ab} = E_{ab} \Psi_{ab} \\
[E_{ab} - \hat{H}_l] \Psi_{ab} = \lambda \hat{H}_l(\lambda) \Psi_{ab}.
\]

Here, we consider the electron–electron interaction \(\hat{V}_{ee} \) of electron pair \(ab \) explicitly, while leaving the interaction with the other \(N-2 \) electrons on the mean field level \(\hat{v}_{ab} \). For two electrons we trivially have \(v_{ab} = v_0 \). However, for more than two electrons we would have to make this approximation explicitly. The resulting perturbation operator is

\[
\hat{H}_l(\lambda) = \hat{V}_{ee} - \hat{\phi}_a/\lambda + \hat{v}_{ab}^{MF}
\]

with the definition of \(\hat{v}_{ab}^{MF} \) as

\[
\langle \Phi_{ab} | \hat{v}_{ab}^{MF} | \Phi_{ab} \rangle = \frac{1}{2} \sum_{i=a,b} \sum_{\substack{occ \ r \ s \ \text{unocc} \ ra \ rb}} \langle \phi_i | \phi_j | \phi_i | \phi_j \rangle,
\]

where \(\{ \phi_i \} \) are the KS orbitals and \(\langle \phi_i | \phi_j | \phi_i | \phi_j \rangle = \langle \phi_i | \phi_j \rangle \langle \phi_i | \phi_j \rangle - \langle \phi_i | \phi_j \rangle \langle \phi_i | \phi_j \rangle \). The KS orbitals can be used to generate an antisymmetric non-interacting KS electron-pair function

\[
\Phi_{ab}(1, 2) = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_a(1) \\ \phi_b(1) \\ \phi_a(2) \\ \phi_b(2) \end{pmatrix}
\]

Here the numbers 1 and 2 are a short-hand notation for the tuple of space and spin variables of the first and second electron, respectively. The corresponding non-interacting Green’s function \(G_0(1, 2; 1', 2'; E_{ab}) \) for this electron pair \(ab \) is

\[
G_0(1, 2; 1', 2'; E_{ab}) = \left(\frac{\Phi_{ab}(1, 2)}{E_{ab} - \epsilon_a - \epsilon_b} + \sum_{i=a,b} \frac{\Phi_{ri}(1, 2)}{E_{ab} - \epsilon_i - \epsilon_r} + \sum_{r<s} \frac{\Phi_{rs}(1, 2)}{E_{ab} - \epsilon_r - \epsilon_s} \right) \Psi_{ab}^*(1', 2'),
\]

where \(\{ \epsilon_i \} \) are the KS eigenvalues

\[
\epsilon_i = \langle \phi_i | \hat{H}_l | \phi_i \rangle = \langle \phi_i | \hat{T} | \phi_i \rangle + \langle \phi_i | v_0 | \phi_i \rangle.
\]

As \(\hat{H}_l \) (equation (2)) is a one-electron operator, it is also possible to reorganize the eigenvalues in terms of each electron pair \(ab \)

\[
\epsilon_{ab} = \epsilon_a + \epsilon_b = \langle \Phi_{ab} | \hat{H}_l | \Phi_{ab} \rangle
\]

which could be considered as the zero-order approximation of the electron pair energy \(E_{ab} \).

Now we introduce the first approximation to the BGE. We neglect the single excitation contribution, i.e., the first sum in equation (16)

\[
G_0(1, 2; 1', 2'; E_{ab}) \approx \left(\frac{\Phi_{ab}(1, 2)}{E_{ab} - \epsilon_a - \epsilon_b} + \sum_{r<s} \frac{\Phi_{rs}(1, 2)}{E_{ab} - \epsilon_r - \epsilon_s} \right) \Psi_{ab}^*(1', 2').
\]

As will be discussed in section 4.1, this approximation, together with the other two approximations we will make later, is essential for achieving an efficient correlation functional which, however, keeps the exact solution for the \(H_2 \) dissociation limit in the minimal basis.

With this approximation, the electron–pair function \(\Psi_{ab} \) can be written as

\[
\Psi_{ab}(1, 2) = \int d\lambda d\lambda' \Psi_{ab}(1, 2; 1', 2'; E_{ab}) \lambda \hat{H}_l(\lambda) \Psi_{ab}(1', 2')
\]

\[
= \Phi_{ab}(1, 2) \frac{\langle \Phi_{ab} | \lambda \hat{H}_l(\lambda) | \Psi_{ab} \rangle}{E_{ab} - \epsilon_a - \epsilon_b} + \sum_{r<s} \frac{\Phi_{rs}(1, 2)}{E_{ab} - \epsilon_r - \epsilon_s} \langle \Phi_{rs} | \lambda \hat{H}_l(\lambda) | \Psi_{ab} \rangle.
\]

It is convenient to introduce intermediate normalization \(\langle \Phi_{ab} | \Psi_{ab} \rangle = 1 \). Together with the expression of the expectation value of the perturbation energy

\[
E_{ab} = \epsilon_a + \epsilon_b = \langle \Phi_{ab} | \lambda \hat{H}_l(\lambda) | \Psi_{ab} \rangle
\]
the BGE electron pair function $\Psi_{ab}(1, 2)$ becomes

$$\Psi_{ab}(1, 2) = \Phi_{ab}(1, 2) + \sum_{r < s}^{\text{unocc}} \Phi_{rs}(1, 2) \left(\Phi_{rs} \frac{1}{\lambda} \hat{H}_f(\lambda) \Phi_{rs} \right). \tag{22}$$

Since the BGE electron pair function Ψ_{ab} appears on both sides of this equation, both Ψ_{ab} and E_{ab} (equation (23)) contain an infinite sequence of Goldstone diagrams [22, 23], as one can easily see by inserting equation (22) into equation (21)

$$E_{ab} = \epsilon_a - \epsilon_b = \left(\Phi_{ab} \left| \lambda \hat{H}_f(\lambda) \right| \Phi_{ab} \right) + \sum_{r < s}^{\text{unocc}} \frac{\Phi_{rs} \left(\lambda \hat{H}_f(\lambda) \Phi_{rs} \right) \Phi_{rs} \left(\lambda \hat{H}_f(\lambda) \Phi_{rs} \right)}{E_{ab} - \epsilon_a - \epsilon_b}. \tag{23}$$

We now consider the different terms step by step. First, we expand the $e_{ab}^{1\text{st}}(\lambda)$ term on the right-hand side

$$e_{ab}^{1\text{st}}(\lambda) = \lambda \left(\Phi_{ab} \left| \hat{V}_{ve} + \hat{v}_{\text{MF}}^{\text{MF}} - \hat{v}_{\text{HF}} - \hat{v}_{\text{EC}} \right| \Phi_{ab} \right) = \sum_{i = a, b} \left\langle \phi_i \left| \frac{1}{2} \left(\hat{V}_{\text{HF}} - \hat{v}_{\text{HF}} - \hat{v}_{\text{EC}} \right) \phi_i \right\rangle \right. \tag{24}$$

It is the first-order correction to the non-interaction electron pair energy e_{ab} defined in equation (18). Utilizing the definitions of \hat{v}_{EC} (equation (4)) and \hat{v}_{HF} (equation (14)) for the fully-interacting system $(\lambda = 1)$, we have

$$e_{ab}^{1\text{st}}(1) = \left(\Phi_{ab} \left| \hat{V}_{ve} + \hat{v}_{\text{MF}}^{\text{MF}} - \hat{v}_{\text{HF}} - \hat{v}_{\text{EC}} \right| \Phi_{ab} \right), \tag{25}$$

where $e_{ab}^{1\text{st}}(1)$ is the corresponding first-order correction of the non-interaction electron energy e_{ab} for the fully interacting system. And $\hat{v}_{\text{HF}}^{\text{MF}}$ is the Hartree–Fock like exact exchange operator defined as

$$\left(\phi_a \phi_b \mid \hat{v}_{\text{HF}}^{\text{MF}} \phi_a \phi_b \right) = - \sum_{i} \left(\phi_i \phi_i \mid \phi_a \phi_b \right). \tag{26}$$

Together with the the non-interaction electron pair energy e_{ab}, this leads to the electron-pair total energy at the first-order many-body perturbation level, which contains only the exact exchange. Next we define the BGE electron-pair correlation energy $e_{ab}^{\text{BGE}}(\lambda)$ as

$$e_{ab}^{\text{BGE}}(\lambda) = E_{ab} - \epsilon_a - \epsilon_b - e_{ab}^{1\text{st}}(\lambda). \tag{27}$$

For two electrons, $e_{ab}^{\text{BGE}}(\lambda)$ is the total correlation energy $E_{\text{tot}}^{\text{BGE}}(\lambda)$. For more than two electrons we have to sum up the the correlation energies of all electron pairs:

$$E_{\text{tot}}^{\text{BGE}}[n](\lambda) = \sum_{a < b}^{\text{occ}} e_{ab}^{\text{BGE}}(\lambda). \tag{28}$$

Finally, the BGE total energy for the fully interacting system $(\lambda = 1)$ becomes

$$E_{\text{tot}}^{\text{BGE}} = \sum_{a}^{\text{occ}} e_{a}^{1\text{st}}(1) + \sum_{a < b}^{\text{occ}} e_{ab}^{\text{BGE}}[n](1), \tag{29}$$

where $E_{\text{tot}}^{\text{EX}}$ is the exact-exchange total energy in the KS–DFT framework. BGE is thus exact for one- and two-electron systems, but approximate for more electrons, because interaction terms between three or more electrons are missing.

With the definition of $e_{ab}^{\text{BGE}}(\lambda)$, equation (23) becomes

$$e_{ab}^{\text{BGE}}(\lambda) = \sum_{r < s}^{\text{unocc}} \frac{\Phi_{rs} \left(\lambda \hat{H}_f(\lambda) \Phi_{rs} \right) \Phi_{rs} \left(\lambda \hat{H}_f(\lambda) \Phi_{rs} \right)}{e_{ab}^{\text{BGE}}(\lambda) + e_{ab}^{1\text{st}}(\lambda) \Delta e_{ab}^{\text{ex}}}, \tag{30}$$

where $\Delta e_{ab}^{\text{ex}} = \epsilon_a - \epsilon_b - \epsilon_a - \epsilon_b$. The second term on the third line of equation (30) emerges when we replace Ψ_{ab} by equation (22). This expansion reveals that the BGE correlation energy contains an infinite summation of a sequence of Goldstone pair diagrams [22, 23]. Therefore, this sequence of Goldstone diagrams contains only two hole lines, representing the electron pair ab, and the infinite summation goes through all the ladder diagrams.
over two particle lines (see figure 1). In other words, the intermediate pairs always propagate as electrons [22]. Conversely, equation (30) has to be solved self-consistently, as the electron-pair energy \(E_{ab} \) depends on itself. As alluded to before, the BGE accounts for the correlation of two electrons and thus provides the exact solution for one- and two-electron systems. However, equation (30) is not exact, because we omitted the single excitations at the very beginning. Nonetheless, our approximation should still be able to capture the subtle (near)-degeneracy static correlation effects at \(\text{H}_2 \) dissociation and eliminate the one-electron ‘self-correlation’ error as does the configuration-interaction method with double excitations (CID) or the CCD method. As mentioned above, the electron-pair correlation with all ladder diagrams can also be introduced from pairing matrix fluctuation in the pp-RPA [56]. Nesbet [66] has demonstrated that BGE is equivalent to the so-called independent electron-pair approximation (IEPA) in quantum chemistry [23], which can be considered as an intermediate approximation between CID and MP2. However, we prefer to keep the BGE acronym (equation (30)) as it is more compact and easily linked to an expansion of Goldstone diagrams [23, 67, 68] which is helpful for further discussions (figure 1).

3. The second-order BGE approximation

3.1. Derivation of BGE2

The BGE electron-pair correlation energy \(e_{ab}^{\text{BGE}} \) in equation (30) contains an infinite sequence of particle–particle ladder diagrams (pp-ladder resummation), as shown in figure 1, because the BGE wave function \(\Psi_{ab} \) also appears on the right-hand side of the equation. In addition, equation (30) should be solved iteratively as \(e_{ab}^{\text{BGE}} \) appears on both sides of the equation (e\(_{ab}\)-coupling effect). These two mechanisms cooperate to deliver an accurate description of exchange and correlation in one- and two-electron systems. It has been argued that an explicit (or implicit) resummation of a selected series of diagrams (e.g., the pp-ladder resummation shown in figure 1) is necessary to remove the divergence at degeneracies of any finite-order perturbation theory [7, 8, 16, 19, 47]. However, in this work we will show that the same effect can be achieved by the e\(_{ab}\)-coupling effect at finite orders of perturbation theory. This allows us to terminate the BGE expansion at the second order, as long as we retain the e\(_{ab}\)-coupling effect. This second-order BGE (BGE2) is the second approximation we make:

\[
e_{ab}^{\text{BGE2}}(\lambda) = \sum_{r < l} \int x^2 | \langle \Phi_{ab} | \hat{H}_r(\lambda) | \Phi_{ab} \rangle |^2 e_{ab}^{\text{BGE}(\lambda)}(\lambda) + e_{ab}^{\text{IEPA}(\lambda)}(\lambda) - \Delta e_{ab}^{\text{IEPA}(\lambda)}.
\]

Here we have utilized the fact that both \(\hat{V}_{ab}^{\text{MF}} \) and \(\hat{V}_{ab}^{\text{IEPA}} \) are one-electron operators, which do not contribute to the expectation value between the ground state and a double excitation.

We will show in section 4.1 that BGE2 only dissociates \(\text{H}_2 \) in a minimal basis correctly, if we remove \(e_{ab}^{\text{IEPA}(\lambda)} \) from the denominator. So in the following we drop \(e_{ab}^{\text{IEPA}(\lambda)} \). This is our final approximation:

\[
e_{ab}^{\text{BGE2}(\lambda)}(\lambda) \approx \sum_{r < l} \int x^2 | \langle \Phi_{ab} | \hat{H}_r(\lambda) | \Phi_{ab} \rangle |^2 e_{ab}^{\text{BGE}(\lambda)}(\lambda) - \Delta e_{ab}^{\text{IEPA}(\lambda)}.
\]

\(e_{ab}^{\text{BGE2}(\lambda)}(\lambda) \) now appears as a simple sum-over-state formula that is similar to standard PT2 and thus exhibits the same computational scaling. We will again need to sum all electron pairs to obtain the full BGE2 correlation energy \(E_{ab}^{\text{BGE2}(\lambda)}(\lambda) \) for systems with more than two electrons.
\[E_{\text{BGE2}}^{\text{BGE2}}(\lambda) = \sum_{a < b}^{\infty} e^{\text{BGE2}}_{ab}(\lambda). \]

A distinct advantage of equation (32) is that the dependence on the coupling constant \(\lambda \) is now simple and well-defined. Following equation (5) we can easily obtain the BGE2 electron-pair correlation potential \(v^{\text{BGE2}}_{ab}(\lambda) \) as

\[
v^{\text{BGE2}}_{ab}(\lambda) = \sum_{r < s}^{\infty} 2\lambda \left| \langle \phi_r \phi_s | \phi_r \phi_s \rangle \right|^2 e^{\text{BGE2}}_{rs}(\lambda) - \Delta e^{\text{rs}}_{ab} \times \left(1 + \frac{1}{2} e^{\text{BGE2}}_{ab}(\lambda) - \Delta e^{\text{rs}}_{ab} \right)
\]

and then for a many electron system

\[
v^{\text{BGE2}}_{c}(\lambda) = \sum_{a < b}^{\infty} v^{\text{BGE2}}_{ab}(\lambda).
\]

The BGE2 correlation potential also has to be solved iteratively, which prevents us from making further analytical manipulations. However, for \(\text{H}_2 \) in a minimal basis, the BGE2 correlation energy and potential can be solved analytically, which will give us more insight into BGE2. This will be discussed later in section 4.1.

At this point, we will recap the approximations made in the derivation of the BGE2 correlation functional:

1. From the outset we chose a pair theory. The full BGE (equations (11) and (12)) explicitly treats interactions in one electron pair and is exact for one- and two-electron systems. For more than two electrons, the interaction from other electrons can be taken into account in a mean field fashion (equation (14)). Then the correlation energy sums up the correlations of all electron pairs (equations (28) and (33)).

2. The BGE can be solved by means of Green’s functions (equation (20)). Here we omit the single excitation contribution in the construction of the non-interacting Green’s function \(G_0 \) (equation (19)). We argue that this approximation is justified and captures the subtle xc effects in one- and two-electron systems as does CID or CCD.

3. The next approximation is to terminate the BGE expansion at the second order (equation (31)). This implies that we remove the infinite summation of particle–particle ladder diagrams (figure 1). The resulting BGE2 approximation still retains the \(e_{\text{ab}} \)-coupling effect. We will show later that the \(e_{\text{ab}} \)-coupling at second-order in perturbation theory is sufficient to capture correlations that emerge from (near)-degeneracies and that higher-order connected Goldstone diagrams are then not needed. However, if we are far from degeneracies (e.g., \(\text{H}_2 \) in the middle of dissociation) BGE2 alone is not sufficient and higher order diagrams would be required.

4. The final approximation (equation (32)) removes the first-order perturbation term \(e_{\text{ab}}^{\text{st}} \) from the denominator of equation (31). On the one hand, this omission removes the difficulty of having to consider the unknown density adaptive operator \(\hat{\rho}_l \) explicitly along the AC path (see equations (4) and (24)). On the other hand, we will show in section 4.1 that together with the other two approximations, this approximation is necessary to deliver an accurate description of \(\text{H}_2 \) dissociation in a minimal basis.

3.2. Analysis of the \(e_{\text{ab}} \)-coupling effect in BGE2

Comparing to the standard PT2 expression, the only difference in the BGE2 correlation expression (equations (32) and (33)) is that the BGE2 electron-pair correlation \(e^{\text{BGE2}}_{ab}(\lambda) \) itself appears in the denominator. \(e^{\text{BGE2}}_{ab}(\lambda) \) should acquire a finite value to prevent the numerical divergence for small-gap systems where \(\Delta e^{\text{rs}}_{ab} \to 0 \). To distinguish BGE2 from PT2, modified particle and hole lines (double line) are introduced in figure 2 to represent the \(e_{\text{ab}} \)-coupling effect in the BGE2 method which corrects the double-excitation energies \(\Delta e^{\text{rs}}_{ab} \) and should be solved iteratively. We will demonstrate the accuracy of the \(e_{\text{ab}} \)-coupling effect later both numerically (section 3.3) and analytically (section 4.1). In this section, we will provide a many-body perturbation theory perspective of the \(e_{\text{ab}} \)-coupling effect.

In quantum chemistry, the configuration interaction equation with singles and doubles (CISD) is usually solved with iterative techniques [69], to avoid a direct diagonalization of the large Hamiltonian matrices in configuration space. Pople et al [70] demonstrated that such iterative algorithms are more than just a technical trick. From a many-body perturbation theory viewpoint, each iteration introduces higher order terms. For example, after the second iteration, the second- and third-order terms emerge in the CISD energy expression but with a scaled weight [70, 71]. This would also be true for the \(e_{\text{ab}} \)-coupling effect in the complete BGE expansion (equation (30)). But can we write down a perturbative expansion for the second-order BGE expression (equation (32) and figure 2)? In other words, does the \(e_{\text{ab}} \)-coupling effect introduce higher order perturbation terms during the iterative procedure? In this section, we will answer these questions step-by-step.
To demonstrate the behavior of BGE2 for (near)-degeneracies, we analyse its limit as $\Delta \epsilon_{ab}^{rs}$ goes to zero. To do so we need to introduce a level-shift (L) into the expression of the BGE2 correlation energy (equation (32))

$$e_{ab}^{BGE2}(\lambda) = \sum_{r<s}^{\text{unocc}} \frac{\lambda^2 \left| \langle \phi_r \phi_s | \phi_l \phi_l \rangle \right|^2}{\left(\Delta \epsilon_{ab}^{rs} + L \right)}$$

$$= - \sum_{r<s}^{\text{unocc}} \frac{\lambda^2 \left| \langle \phi_r \phi_s | \phi_l \phi_l \rangle \right|^2}{\left(\Delta \epsilon_{ab}^{rs} + L \right)} (1 - x(L))^{-1},$$

where

$$x(L) = \frac{e_{ab}^{BGE2}(\lambda) + L}{\Delta \epsilon_{ab}^{rs} + L}.$$ (37)

To be able to expand equation (36) into a geometric series we require

$$-1 < x(L) < 1.$$ (38)

This leads to the following constraint for L

$$L > \max \left(0, -\frac{1}{2} (\Delta \epsilon_{ab}^{rs} + e_{ab}^{BGE2}(\lambda)) \right).$$ (39)

By definition we have $e_{ab}^{BGE2} \leq 0$ and $\Delta \epsilon_{ab}^{rs} \geq 0$. In addition, $\Delta \epsilon_{ab}^{rs} > |e_{ab}^{BGE2}(\lambda)|$ holds for insulators, most semi-conductors and even for most of the double excitations in small-gap systems (excluding cases where ab refers to the highest occupied molecular orbital (HOMO)). We can then always choose $L = 0$.

However, we cannot take $L = 0$ when the energy gap of double excitations from the HOMO to the LUMO ($\Delta \epsilon_{ab}^{rs}$) tends to zero and $\Delta \epsilon_{ab}^{rs} \leq e_{ab}^{BGE2}(\lambda)$. Then only a positive level shift $L > -\frac{1}{2} (\Delta \epsilon_{ab}^{rs} + e_{ab}^{BGE2}(\lambda))$ will guarantee a convergent geometric expansion.

We will discuss the positive level shift later and first analyse the $L = 0$ case. Expanding equation (36) into a geometric series yields

$$e_{ab}^{BGE2}(\lambda) = - \sum_{n=0}^{\infty} \sum_{r<s}^{\text{unocc}} \frac{\lambda^2 \left| \langle \phi_r \phi_s | \phi_l \phi_l \rangle \right|^2}{\left(\Delta \epsilon_{ab}^{rs} + L \right)} x(L)^n,$$ (40)

which for $L = 0$ becomes

$$e_{ab}^{BGE2}(\lambda) = - \sum_{n=0}^{\infty} \sum_{r<s}^{\text{unocc}} \frac{\lambda^2 \left| \langle \phi_r \phi_s | \phi_l \phi_l \rangle \right|^2}{\left(\Delta \epsilon_{ab}^{rs} \right)^{n+1}} e_{ab}^{BGE2}(\lambda)^n.$$ (41)

This expression allows us to analyze the BGE2 correlation energy from a many-body perspective by iterating the right-hand side. Here, we examine the simplest two terms. The first term in the BGE2 expansion ($n = 0$) is nothing but the standard PT2 correlation energy

$$e_{ab}^{BGE2,1st}(\lambda) = - \sum_{r<s}^{\text{unocc}} \frac{\lambda^2 \left| \langle \phi_r \phi_s | \phi_l \phi_l \rangle \right|^2}{\Delta \epsilon_{ab}^{rs}}.$$ (42)

The Goldstone diagrams of the PT2 correlation are shown in figure (2). The second term becomes

$$e_{ab}^{BGE2,2nd}(\lambda) = \sum_{r<s}^{\text{unocc}} \frac{\lambda^2 \left| \langle \phi_r \phi_s | \phi_l \phi_l \rangle \right|^2}{\Delta \epsilon_{ab}^{rs}} \times S,$$ (43)
where S is the normalization of the first-order perturbative wave-function Φ_{ab}^{1st} of the electron-pair ab

$$
|\Phi_{ab}^{1st}| = \sum_{r<s} \frac{\langle \phi_r \phi_b | \phi_s \phi_a \rangle}{\Delta e_{ab}^{r,s}} |\Phi_{rs}|
$$

$$
S = \sum_{r<s} \frac{\langle \phi_r \phi_b | \phi_s \phi_a \rangle^2}{(\Delta e_{ab}^{r,s})^2} = \langle \Phi_{ab}^{1st} | \Phi_{ab}^{1st} \rangle
$$

(44)

e_{ab}^{BGE2,2nd}$ is a fourth-order perturbation in terms of the coupling constant λ. This expansion includes only even powers of the perturbation. On the other hand, $e_{ab}^{BGE2,2nd}$ can be interpreted as 32 quadruple-excitation Goldstone diagrams which, however, are both disconnected. The e_{ab}-coupling effect in BGE2 does therefore not produce higher-order connected Goldstone diagrams. Using the so-called Hugenholtz diagram rule [72], these 32 quadruple-excitations can be represented by two Hugenholtz diagrams, which are shown in figure 3.

Recently, a self-consistent Green’s function scheme was proposed at 2nd order as well [58]. This self-consistent second-order self-energy method also exhibits promising performance for systems with strong correlation. It would be very interesting to compare the diagrams of the Green’s function theory with BGE2 in the future.

Now we consider the case of $\Delta e_{ab}^{r,s} \leq |e_{ab}^{BGE2}(\lambda)|$, where the (near)-degeneracy effects are dominant. As mentioned above, to guarantee a convergent geometric expansion, a positive level-shift $L > -\frac{1}{\lambda} (\Delta e_{ab}^{r,s} + e_{ab}^{BGE2}(\lambda))$ is required. By inserting the binomial series $e_{ab}^{BGE2} + L)^m$ into equation (36) we obtain the corresponding geometric series

$$
e_{ab}^{BGE2}(\lambda) = -\sum_{n=1}^{\infty} \sum_{m=0}^{n} \binom{n}{m} L^{n-m} \sum_{r<s} \sum_{r<s} \frac{\lambda^2 \langle \phi_r \phi_b | \phi_s \phi_a \rangle^2}{(\Delta e_{ab}^{r,s} + L)^{n+m+1}} e_{ab}^{BGE2}(\lambda)^m.
$$

(45)

We note that the $L = 0$ case in equation (41) is a special case of equation (45). For positive level shifts, it can be easily proven that the first two expansion terms of equation (45) are the same as in equations (42) and (43), only that the level-shift L appears in the denominator. We plot the perturbative expansion of the BGE2 correlation in figure 4. For the $L = 0$ case, the BGE2 correlation can be interpreted based on the standard many-body perturbation theory. However, thick lines in the perturbation expansion for the $L > 0$ case suggest a constant level-shift L to the double excitation energies (bottom). The squiggly lines refer to the bare Coulomb interaction.
H$_2$ contains strong terms of both time and memory. Although the [119x197]It has been implemented in the Fritz Haber Institute [119x412]our experience, and an accuracy of [119x149]rPT2 [119x173]without a proper level-shift perturbative method based on this single reference, because the BGE2 correlation cannot be expanded directly the absolute value of the corresponding BGE2 electron-pair correlation energy, it is not advisable to use a [119x350]of a single-reference perturbation method. If the HOMO-LUMO gap of a given single reference is smaller than [119x75]As illustrated in figure 5, the PBE0 functional fails in both cases, yielding a heavy one-electron ‘self-correlation’ error (around 66 mHartree in the H$_2$ dissociation limit) and a significant underestimation of the (near)-degeneracy static correlation limit (around 119 mHartree in the H$_2$ dissociation limit).

$$S = \sum_{k<\ell} \left| \langle \phi_k \phi_\ell | \phi_k \phi_\ell \rangle \right|^2 \left(\Delta \epsilon^r_{ab} + L \right)^2$$

(46)

The divergence of MP and GL perturbation theories has been widely discussed in quantum chemistry [73–77]. Small-gap systems with strong (near)-degeneracy effects are, of course, one kind of failure, as the perturbation energy diverges at any finite order. For non-degenerate systems, where $\Delta \epsilon^r_{ab}$ is not exactly zero, the MP (or GL) perturbation expansion does not diverge. However, Leininger et al found that the perturbation expansion also does not converge toward the exact solution even for very simple systems such as Ne, F$^-$, and Cl$^-$ [74]. The individual terms in the perturbative expansion of these systems do not diverge, but exhibit an oscillatory divergence with increasing order [73,74]. From a mathematical point of view the MP expansion fails, if the single reference, e.g., HF or KS, is far from the exact ground state [75–77]. However, there is no simple diagnostic tool to determine when a multi-reference problem breaks the MP expansion.

In this work we propose to use the condition $\Delta \epsilon^r_{ab} \leq \epsilon^r_{ab}^{BGE2} (\lambda)$ as a simple criterion to judge the divergence of a single-reference perturbation method. If the HOMO–LUMO gap of a given single reference is smaller than the absolute value of the corresponding BGE2 electron-pair correlation energy, it is not advisable to use a perturbative method based on this single reference, because the BGE2 correlation cannot be expanded directly without a proper level-shift L (equation (36)). The value of the level shift L then quantifies the multi-reference nature of each electron pair in the investigated systems.

3.3. H$_2$ and H$_2^+$ dissociation

Our BGE2 xc functional encompasses the exact exchange and the BGE2 correlation term (equations (32) and (33))

$$E^{BGE2}_{xc} = E^{	ext{EX}}_c + E^{BGE2}_c (\lambda = 1).$$

(47)

It has been implemented in the Fritz Haber Institute ab initio molecular simulations (FHI-aims) code package [78,79]. Due to its simple sum-over-state formula, BGE2 has the same computational scaling as standard PT2 in terms of both time and memory. Although the e_{ab}-coupling requires an iterative solution, convergence is fast in our experience, and an accuracy of 10^{-8} Hartree can be achieved within a few iterations.

In figure 5 we plot the H$_2$ and H$_2^+$ dissociation curves for various methods (BGE2, PBE, PBE0, PT2, RPA, and rPT2). All results are obtained with input KS orbitals from a PBE0 calculation [80–82]. All calculations, including the CISD reference, are carried out with FHI-aims using the NAO–VCC-5Z basis set [79,83]. In figure 6 we show the same curves for RPA, rPT2 and BGE2 for different starting points (PBE, PBE0 and HF).

In the following we will analyse the performance of the different approaches shown in figure 5 class by class. In the dissociation of H$_2^+$ only non-local exact exchange is required and correlation is absent, while dissociated H$_2$ contains strong (near)-degeneracy static correlation, which current DFT methods typically underestimate. As illustrated in figure 5, the PBE0 functional fails in both cases, yielding a heavy one-electron ‘self-correlation’ error (around 66 mHartree in the H$_2$ dissociation limit) and a significant underestimation of the (near)-degeneracy static correlation limit (around 119 mHartree in the H$_2$ dissociation limit).
Fifth-level correlation functionals, e.g., PT2, RPA and rPT2, are fully non-local. Figure 5 reveals that PT2 is exact for one-electron systems such as H_2^+ dissociation, in agreement with previous investigations [1–5], but completely fails for heavily stretched H_2, where static correlation becomes dominant. RPA exhibits the opposite behavior. It is accurate in the H_2 dissociation limit, but its severe one-electron ‘self-interaction’ or delocalization error [84, 85] affects H_2^+ dissociation adversely. Adding the SOSEX term to RPA removes the one-electron self-interaction error again such that rPT2 dissociates H_2^+ correctly, but simultaneously the performance for H_2 deteriorates [15]. Henderson et al have ascribed this behavior to a removal of static correlation by the SOSEX term [4].

Figure 5 reveals that the BGE2 functional is free of one-electron ‘self-correlation’ and thus dissociates H_2^+ correctly. It also delivers the correct H_2 dissociation limit and reduces the incorrect repulsive ‘bump’ that RPA exhibits at intermediate bond lengths. We attribute this consistent improvement to three factors. (1) The one-electron ‘self-correlation’ error is removed at the PT2 level. (2) (Near)-degeneracy static correlation (for two electrons) is incorporated by the e_{alb}-coupling mechanism at the second-order perturbation level without having to invoke higher-order Goldstone diagrams. (3) Due to the systematic nature of the approximations we made, we can trace the repulsive ‘bump’ back to the 2nd order approximation, when we went from the full BGE to BGE2. In other words higher-order pp-ladder diagrams will alleviate the ‘bump’ [19].

In figure 6 we illustrate the starting-point dependence of RPA, rPT2 and BGE2 by evaluating all three approaches for a PBE, a PBE0 and a HF reference. The starting-point dependence in RPA is quite pronounced, which is akin to the much investigated starting-point dependence in the corresponding GW approach for excitation spectra [86–89]. Judging by figure 6, the starting-point dependence of rPT2 and BGE2 appears to be as pronounced as for RPA. Although it remains to be seen in the future, if this statement can be generalized.

4. Promising properties of the BGE2 correlation functional

In wave-function theory, there is a systematic way to improve the theoretical approach for the electronic correlation energy [23, 66, 90, 91]. However, it is challenging to design methods that fulfill a certain number of exact conditions and constraints [91]. One requirement is that the solution for one- and two-electron systems such as H_2/H_2^+ is exact. Another requirement is size consistency [23, 26, 27], i.e., the ground-state total energy itself is an extensive quality, which should be asymptotically proportional to the system size [23]. These two criteria are widely used to judge the universal applicability of a given theoretical method from small isolated molecules to extensive solids. We will analyse analytically, how well BGE2 fares for H_2 in a minimal basis.

4.1. H_2 in minimal basis

The BGE2 approximation is not exact for two-electron systems. However, in section 3.3, we reported a significant improvement of BGE2 over PT2 and RPA for H_2 dissociation. In this section, we analyze the BGE2 correlation functional (equation (32)) and its correlation potential (equation (34)) for H_2 in a minimal basis. We demonstrate that the BGE2 approximation captures essential features of the adiabatic connection path that current state-of-the-art approximations do not.
The minimal basis of H_2 consists of one bonding (ψ_+) and one anti-bonding (ψ_-) KS orbital determined by the $D_{\infty h}$ symmetry:

$$\psi_\pm(r) = \frac{\phi_{\pm 1}(r - R_1) \pm \phi_{\pm 1}(r - R_2)}{\sqrt{2 + 2S_{R_1,R_2}}},$$

(48)

where R_1 and R_2 are the two atomic positions, $\phi_{\pm 1}(r - R_{1/2})$ is the normalized $1s$ atomic orbital located at each hydrogen atom, and S_{R_1,R_2} is the overlap integral of the two atomic orbitals. In this minimal basis representation, the BGE2 correlation energy (equation (32)) and its potential with respect to the coupling constant λ (equation (34)) can be derived analytically

$$E_{c}^{BGE2}(\lambda) = \frac{B - \sqrt{B^2 + 4\lambda A}}{2},$$

$$V_{c}^{BGE2}(\lambda) = -\frac{2\lambda A}{\sqrt{B^2 + 4\lambda^2 A}},$$

(49)

where $A = |\langle \psi_+ | \psi_+ \rangle |^2$ and $B = \Delta \epsilon_{++}$. Now we see that several important features of the AC path are captured by the BGE2 approximation:

(i) When $\lambda \rightarrow 0$, we have

$$V_{c}^{BGE2} (0) = \left. \frac{V_{c}^{BGE2}(\lambda)}{\partial \lambda} \right|_{\lambda=0} = -\frac{2A}{B} = 2E^{PT2}_{c},$$

(50)

which shows that the initial slope of the BGE2 correlation potential is twice the energy in PT2. Comparing to the exact condition, i.e. $V_{c}^{PT2}(0) = 2E_{c}^{PT2}$, the single-excitation contribution is ignored during the first approximation in this work (equations (16) and (19)).

(ii) In the H_2 dissociation limit ($|R_1 - R_2| \rightarrow \infty$ and $B = \Delta \epsilon_{++} \rightarrow 0$) we find for the initial slope $V_{c}^{BGE2} \rightarrow -2\frac{A}{B} \rightarrow \infty$. The BGE2 correlation potential itself tends to a constant value that is independent of λ thanks to the ϵ_{ab}-coupling effect:

$$V_{c}^{BGE2}(\lambda)|_{|R_1 - R_2| \rightarrow \infty} \rightarrow -\langle \hat{\phi}_{1+} | \hat{\phi}_{1+} \rangle.$$

(51)

The coupling-constant integration (equation (5)) is trivial to carry out and the correlation energy E_{c}^{BGE2} has the same value as V_{c}^{BGE2}. This is the exact correlation energy in the minimal basis [23]. In conjunction with the exact exchange energy, it completely cancels out the undesired error originating from the Hartree approximation, and thus guarantees the correct dissociation limit.

If we do not make the fourth approximation, i.e. to remove the first-order perturbation term ϵ_{ab}^{1st} in the denominator of equation (31), the parameter B now equals $\Delta \epsilon_{++} + \epsilon_{ab}^{1st}(\lambda)$. By using the definitions of \hat{V}_c and ϵ_{ab}^{1st} (equations (4) and (24)) we have $\epsilon_{ab}^{1st}(\lambda)$ in the H_2 dissociation limit

$$\epsilon_{ab}^{1st}(\lambda)|_{|R_1 - R_2| \rightarrow \infty} \approx -\lambda \langle \hat{\phi}_{1+} | \hat{\phi}_{1+} | \hat{\phi}_{1+} | \hat{\phi}_{1+} \rangle.$$

(52)

Here, for simplicity, we neglect the exchange $V_4(r)$ and the scaled correlation potential $V_{c}(r, \alpha)$ (equation (4)), since they are small compared to the Hartree energy E_{H4}. The resulting correlation energy $E_{c} = -\frac{3}{2\beta} \langle \hat{\phi}_{1+} | \hat{\phi}_{1+} | \hat{\phi}_{1+} | \hat{\phi}_{1+} \rangle$ covers only 90% of the exact value in the minimal basis (equation (51)). This motivates a posteriori why we made the second approximation, i.e. omitted the single excitation contribution. In practice this single excitation contribution is non-zero in a DFT framework. However, our minimal basis consideration shows that if we were to include it, H_2 would no longer dissociate correctly, unless we would also include higher-order particle–particle ladder diagrams (the third approximation), which would significantly increase the computational cost. The BGE2 correlation functional proposed in this work is thus the simplest approximation that provides the exact H_2 dissociation in the minimal basis. Any further improvement over BGE2 has to simultaneously deal with all approximations in a proper and balanced way.

(iii) The second-order derivative of the BGE2 correlation energy $V_{c}^{BGE2''} = \partial^2 V_{c}(\lambda)/\partial \lambda$ is

$$V_{c}^{BGE2''}(\lambda) = \frac{2A^2B^{-3}\lambda}{(1 + 4\lambda^2 A/B^2)^{3/2}}.$$

(53)

As A and B are positive, $V_{c}^{BGE2''}(\lambda) \geq 0$, indicating that the first derivative of V_{c}^{BGE2} is monotonically increasing within $0 \leq \lambda \leq 1$

$$V_{c}^{BGE2}(\lambda + |\delta \lambda|) \geq V_{c}^{BGE2}(\lambda).$$

(54)

Considering that $V_{c}^{BGE2}(\lambda) \leq 0$ for both $\lambda = 0$ and $\lambda = 1$, $V_{c}^{BGE2}(\lambda)$ captures the convex shape of the exact AC correlation path [6, 10, 92].

(v) The λ-dependent AC path is closely connected to the behavior under uniform density scaling [93], for which the low-density limit is related to the strong correlation limit $\lambda \rightarrow \infty$. The exact correlation functional
should reach a finite value in the strong correlation limit [6, 92, 93], which is satisfied by the BGE2 model according to equation (49) \(V_c \rightarrow -\sqrt{\lambda} \) when \(\lambda \rightarrow \infty \).

Figure 7 presents the correlation potentials of RPA and BGE2 for H₂ dissociation in the minimal basis. At the equilibrium geometry \((R = 0.8 \text{ Å}) \) where the energy gap is large, the BGE2 model exhibits a quasi-linear behavior. For stretched geometries \((R = 3.0 \text{ and } 6.0 \text{ Å}) \), the \(e_{ab} \)-coupling then bends the correlation potential, whereas RPA overestimates the initial slopes. The BGE2 correlation potentials are similar to those of configuration interaction calculations with a quadrupole-\(\zeta \) basis set [92].

We also include the common \([1/1]-\text{Padé AC model} \) [6, 10]

\[\nu^\text{Padé}_c (\lambda) = \frac{a \lambda}{1 + b \lambda}, \quad E^\text{Padé}_c = a + \frac{a \ln (1 + b)}{b^2}. \]

(55)

The two parameters are determined by fixing the initial slope to \(2E_c^{PT2} \) and the correlation energy to \(E_c^{BGE2} \). As illustrated in figure 7, the \([1/1]-\text{Padé formula} \) describes the AC path at the equilibrium geometry well, but exhibits a tendency to underestimate the curvature and overestimate the correlation potential at stretched geometries. A better agreement can be expected by using a more sophisticated \([2/2]-\text{Padé formula} \) [6, 10].

4.2. Size consistency for the ground-state energy calculation

Recently, the application of advanced correlation methods, e.g., MP2 [94–96], RPA [60, 62, 96, 97], and coupled-cluster theories [98–100], in materials science has attracted increased attention. In this paper, we adopt the K-dependence criterion [27, 101–104] to demonstrate the size consistency of the BGE2 correlation functional and its applicability to complex extended materials. The advantage and usage of the K-dependence criterion has been discussed comprehensively in [27]. In short, the number \((K) \) of \(k \)-points in the Brillouin zone is a direct measure of system size in periodic boundary conditions. Then a size-consistent method must have an asymptotic \(K^0 \) dependence.

Before we turn to BGE2, we first discuss Brillouin–Wigner second-order perturbation theory (BW2) [102, 105]. The size consistency of BW2 has been disproved in [27]. This helps us to better understand the size consistency of BGE2 which shares a very similar sum-over-state formula as BW2.

In periodic boundary conditions, the BW2 correlation is given by

\[E^{BW2}_c = \sum_{a < b} \sum_{r < s} \sum_{k, k_r, k_s} \frac{\langle \phi_{ak_r} \phi_{bk_s} | \phi_{ak_s} \phi_{bk_r} \rangle^2}{E^{BW2}_c + E^{X}_{a b} - \Delta e_{a b, k_r k_s}} \]

\[\approx \sum_{a < b} \sum_{r < s} \sum_{k, k_r, k_s} \frac{\langle \phi_{ak_r} \phi_{bk_s} | \phi_{ak_s} \phi_{bk_r} \rangle^2}{E^{BW2}_c - \Delta e_{a b, a b, k_r k_s}}. \]

(56)

Here, \(\phi_{ak_r} \) is a canonical HF or KS spin-orbital in the \(r \)-th band with wave vector \(k_r \). Due to momentum conservation, the summation only goes over three wave vectors \((k_r, k_s, k_r) \), giving rise to a factor \(K^2 \). It can be proven that \(\langle \phi_{ak_r} \phi_{bk_s} | \phi_{ak_s} \phi_{bk_r} \rangle^2 \) exhibits an asymptotic \(K^2 \) dependence. \(E^{X}_{a b} \) and \(\Delta e_{a b, k_r k_s} \) scale as \(K^2 \) and \(K^0 \), respectively [27]. If the denominator scales the same as \(E^{X}_{a b} \) (the first line in equation (56)), the overall scaling
of E_{c}^{BW2} becomes K^0, which would not be size consistent. Removing E_{c}^{EX} from the denominator (second line in equation (56)) changes the scaling of E_{c}^{BW2} to $K^{1/2}$, which is still not size consistent. These non-physical size dependences make the second-order energy per unit cell, E_{c}^{BW2}/K, go to zero as $K \to \infty$. It has been argued that the presence of an extensive quantity, $E_{c}^{BW2} + E_{x}^{EX}$, in the denominator is responsible for the lack of size consistency [27, 105].

The BGE2 correlation energy (equations (32) and (33)) in periodic boundary conditions takes the form

$$
E_{c}^{BGE2}(\lambda) = \sum_{r<s} \sum_{k_{r},k_{s}} E_{c}^{BGE2}(\lambda) - \Delta E_{c}^{BGE2}(\lambda) .
$$

Compared to the BW2 correlation energy, the only difference in BGE2 is the appearance of the correlation coupling for each electron pair ab, i.e. the c_{ab}-coupling. Following a similar approach as for BW2, it is easy to prove that the electron-pair correlation term c_{ab}^{BGE2} scales as K^0 [27]. Due to momentum conservation the summation in the BGE2 correlation energy E_{c}^{BGE2} only runs over one wave vector k_0 (see equation (57)). Therefore, E_{c}^{BGE2} scales as K^1 and thus is size consistent.

4.3. Orbital invariance

It should be stated that an electron-pair approximation such as BGE2 does not have a derived wave function. It thus breaks another important feature: the orbital invariance [23], i.e. the total energies cannot be determined uniquely with respect to rotations among occupied and/or unoccupied orbitals. However, the simple sum-over-state formula of BGE2 (equations (32) and (57)) clearly suggests that the c_{ab}-coupling decays very quickly to standard PT2 when the energy difference becomes larger. Therefore, we expect that this orbital invariance deficiency does not affect real applications. We leave a detailed examination of this issue to the future work.

5. Conclusion

In this work, we present a new insight into the H_2/H_2^+ challenge in DFT. We establish the BGE in the context of DFT through the AC approach. BGE is the simplest approximation to provide the exact solution for one- and two-electron systems. We propose a simple orbital-dependent correlation functional, BGE2, by terminating the BGE expansion at the second order, but reversing the c_{ab}-coupling effect in BGE. BGE2 has a similar sum-over-state formula as the standard PT2, thus sharing the same computational scaling as PT2 in terms of both time and memory. We demonstrate that the c_{ab}-coupling iteration procedure at the second-order expansion does not invoke higher-order connected Goldstone diagrams, but partially captures the multicenter character of each electron pair, especially in heavily stretched H_2. A remarkable improvement of BGE2 over PT2 and RPA in the H_2/H_2^+ challenge can be observed, which suggests that the one-electron ‘self-correlation’ and the two-electron (near-) degeneracy static correlation can be included simultaneously well at the second-order perturbation level in conjunction with a proper treatment of the multi-reference contributions of each electron pair. In addition of the size consistency, the advantage of the BGE2 correlation functional has been further demonstrated using H_2 in minimal basis.

However, for systems with large energy gaps or more electrons, BGE2 reduces to standard PT2 since the effect of the c_{ab}-coupling is nearly damped out. Further development on top of BGE2 could proceed as follows: (1) From the semi-empirical double hybrid perspective, the BGE2 correlation formula could be a promising substitute of normal PT2, which opens an opportunity to extend the double-hybrid scheme into the realm of transition metals while keeping the accuracy achieved for main group elements [30]. (2) From the AC modeling perspective, we can improve the BGE2 model by satisfying more physical constraints. For example, in the strong correlation limit $\lambda \to \infty$, the BGE2 model depends asymptotically on λ^{-1} rather than the correct $\lambda^{-1/2}$ [7, 92]. Promisingly, the plain sum-over-state PT2-like formula makes it easy to fulfill the correct asymptotic behavior by introducing an additional term that depends on $\lambda^{-1/2}$ in the denominator of the BGE2 formula (equation (31)). (3) From the many-body perturbation theory perspective, it would be appealing to renormalize the BGE2 scheme in rPT2 [16], which would be an alternative to construct advanced orbital-dependent functionals systematically.

Acknowledgments

IYZ thanks Professor Xin Xu for helpful discussion. Work at Aalto was supported by the Academy of Finland through its Centres of Excellence Programme (2012-2014 and 2015-2017) under project numbers 251748 and 284621.
References

[31] Chai J D and Head-Gordon M 2009 J. Chem. Phys. 131 174105
[40] Zhang Y and Xu X 2011 Int. Rev. Phys. Chem. 30 115
[66] Nesbet R K 1971 Int. J. Quantum Chem. 4 117
[67] Brueckner K A 1955 Phys. Rev. 100 36
[77] Herman M and Hagedorn G 2009 Int. J. Quantum Chem. 109 210
[93] Nooijen M and Bartlett R J 1999 Int. J. Quantum Chem. 86 245127