The Energy of Hydroxyl Coadsorbed with Water on Pt(111)

Wanda Lew,† Matthew C. Crowe,† Charles T. Campbell,*† Javier Carrasco,‡,§,|| and Angelos Michaelides‡

†Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
‡London Centre for Nanotechnology and Department of Chemistry, University College London, London WC1E 6BT, U.K.
§Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
||Instituto de Catálisis y Petroleoquímica, CSIC, Marie Curie 2, E-28049 Madrid, Spain

ABSTRACT: Adsorbed OH is a key intermediate in many catalytic reactions and a common species on many materials’ surfaces. We report here measurements of the calorimetric heats for forming the widely studied and structurally well-defined coadsorbed (H₂O⋯·OH) complex on Pt(111) from water vapor and adsorbed oxygen adatoms. We further use these heats as benchmarks to evaluate the performance of density functional theory, modified to include van der Waals interactions and zero-point energies, and find agreement to within 1 and 15 kJ/mol for the two adlayer structures studied.

INTRODUCTION

Adsorbed hydroxyl (OHₐd) is a key intermediate in many catalytic reactions over transition metals. For Pt, these include oxidations of organic molecules, steam reforming of hydrocarbons and oxygenates, decomposition of oxygenates, and water gas shift. As a result, and because of the very common presence of OHₐd on the surfaces of many materials, a considerable body of work has gone into understanding the properties of OHₐd. However, despite its great importance, an absolutely key quantity, namely, the energy of adsorbed hydroxyl, has not yet been measured on any surface except for our earlier heat measurements of one of the two adlayer structures discussed here. One of the most widely studied and well-defined structures of OHₐd on any surface is the coadsorbed OH—H₂O overlayer that forms on Pt(111). This overlayer, produced by coadsorbing H₂O and oxygen, through reaction of H₂ plus O₂, therefore, presents an excellent opportunity to establish the stability of OHₐd on a transition-metal surface.

When water gas is dosed to preadsorbed O adatoms on Pt(111), adsorbed hydroxyl groups are produced. In principle, the simplest reaction to give OHₐd would be with a 1:1 stoichiometry

$$\text{H}_2\text{O}_g + \text{O}_{\text{ad}} \to 2\text{OH}_{\text{ad}}$$ \hspace{1cm} (1)

where the subscripts g and ad indicate gas-phase and adsorbed species, respectively. However, it is now established that the reaction of H₂Oₐd and Oₐd is not this simple and, instead, a coadsorbed, hydrogen-bonded H₂O⋯·OH complex with a √3 or 3 × 3 crystalline order is formed. It is most stable against decomposition to H₂Oₐd plus Oₐd when formed with a ratio of 3H₂O:1Oₐd, where it remains stable upon heating in ultrahigh vacuum up to 205 K. This 3H₂O:1Oₐd ratio indicates that the most stable complex has a 1:1 ratio of H₂O/OH, implying a complex of the form (H₂O⋯·OH)ₐd. Clay et al. found that the amount of reacted water at 163 K versus the amount of preadsorbed O is best described by the following reaction stoichiometry:

$$3\text{H}_2\text{O}_g + \text{O}_{\text{ad}} \to 2(\text{H}_2\text{O}⋯\cdot\text{OH})_{\text{ad}}$$ \hspace{1cm} (2)

Both low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) measurements show that the H₂O + Oₐd reaction produces islands of either a √3 or a 3 × 3 structure, or both, depending on the conditions of production, in either case with a local coverage of 2/3 ML of O atoms total. For the √3 structure, this can only be rationalized with one H₂Oₐd and one OHₐd per unit cell, consistent with the (H₂O⋯·OH)ₐd complex of reaction 2. The structures of these √3 and 3 × 3 overlayers, as computed with DFT, are consistent with this composition as well as LEED and STM results (Figure 1). The structures consist of hexagonal hydrogen-bonded networks of H₂O and OH bonded to the Pt atom sites and differ only in their H-bond topologies.

Here, we report calorimetric measurements of the heat of forming this well-defined (H₂O⋯·OH)ₐd complex on Pt(111) from water plus adsorbed O in two different adlayer structures and compare these measured energies to new DFT calculations of these structures. These are the first experimental determinations of the energies of any well-defined adsorbed hydroxyl structure on any surface, except for our earlier paper describing heat measurements of one of the two adlayer structures presented here. In that earlier paper, we did not discuss the details of the structures nor the DFT energies of either adlayer whose structures and energies we analyze here. This is also one of the only calorimetric measurements of the energy of any well-defined adlayer structure where the adlayer is stabilized by hydrogen.
bonding. Not only are these valuable energy measurements in their own right but also they provide important benchmarks against which to evaluate the accuracy of DFT, a very active research focus in surface and materials science. Here, we use these measured energies as such a benchmark, comparing them to results with both a standard semilocal functional and a non-local functional that accounts for van der Waals dispersion forces. We find that, when these forces are included, the agreement is within 15 and 1 kJ/mol for the structures studied, quite good given the large errors sometimes seen with standard DFT.

EXPERIMENTAL SECTION

Experiments were performed in an ultra-high-vacuum chamber (base pressure < 2 \times 10^{-10} mbar) with capabilities for single-crystal adsorption microcalorimetry and surface analysis described previously. Methods were the same as those reported there. The error in absolute accuracy of the calorimetric heats (when averaging >3 independent runs as here) is estimated to be <3% for systems like those here with sticking probabilities above 0.8. We estimate that, when these forces are included, the agreement is within 15 and 1 kJ/mol for the structures studied, quite good given the large errors sometimes seen with standard DFT.

COMPUTATIONAL METHODS

DFT calculations were performed with the VASP 5.2 code. Two exchange-correlation functionals were used: the semilocal PBE and an offspring of the nonlocal van der Waals density functional (vdW-DF) of Dion et al., referred to as “optB88-vdW”. The difference between the original vdW-DF of Dion et al. and optB88-vdW is merely in the exchange functional, with the optB88 exchange functional yielding more accurate interaction energies than the original choice of revPBE. Indeed, the optB88-vdW and the other optimized vdW density functionals reported in ref 16 have now been successfully applied to a wide variety of systems, for example, to bulk solids, hydrocarbon and noble gas adsorption on metals and water adsorption and water clusters.

The computational setup is similar to our previous works. Valence electronic states were expanded in plane waves with a cutoff energy of 500 eV, and a Monkhorst-Pack grid with 12 \times 12 \times 1 k-point sampling per (1 \times 1) unit cell was used. The Pt(111) surface was modeled by (\sqrt{3} \times \sqrt{3}) and (3 \times 3) unit cells, containing six atomic layers. The atoms in the three bottom layers were fixed to their bulk-truncated PBE positions (a_{Pt} = 3.981 Å) during structure optimizations. In all cases, a dipole correction along the direction perpendicular to the metal surface was applied and geometry optimizations were performed with a residual force threshold of 0.015 eV/Å. Zero-point energies were obtained by computing the vibrational frequencies of the adsorbed species by means of a finite displacement method.

RESULTS

We measured the energy of reaction 2 using calorimetry at 150 K and two O ad precoverages (1/6 and 1/4 ML) chosen to give the best comparisons to previous experiments that gave well-defined LEED and STM structures. Table 1 presents the integral heats of adsorption for D$_2$O at these precoverages for 1/2 ML of reacted D$_2$O. The first entry is for ~1/6 ML of O$_{ad}$, which gives...
Table 2. Reaction Energies per Mole of Reacted H₂O and D₂O (ΔE) Corresponding to Reactions 2C–4C Computed with PBE and optB88-vdW

<table>
<thead>
<tr>
<th>reaction</th>
<th>ΔE (kJ/mol of H₂O)</th>
<th>ΔE [ZPE] (kJ/mol of H₂O)</th>
<th>ΔE [ZPE] (kJ/mol of D₂O)</th>
<th>ΔH [ZPE] at 150 K (kJ/mol of D₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C</td>
<td>-59.1 (-60.2)</td>
<td>-81.6 (-82.7)</td>
<td>-49.8 (-51.2)</td>
<td>-51.7</td>
</tr>
<tr>
<td>3C</td>
<td>-40.5 (-41.3)</td>
<td>-65.5 (-66.3)</td>
<td>-32.0 (-33.0)</td>
<td>-33.7</td>
</tr>
<tr>
<td>4C</td>
<td>+15.3</td>
<td>+17.0</td>
<td>+21.6</td>
<td>+20.4</td>
</tr>
</tbody>
</table>

a Zero-point energy corrected energies are also shown (ΔE[ZPE]). For reactions 2C and 3C, a √3 model was used for the H₂O-OH overlayer. Values in parentheses were computed using its 3 x 3 model.

The reaction numbers here correspond to the same basic reactions as above, but the “C” implies a computed reaction, which requires more strict limitation to these specific initial and final structures. These structural models are shown schematically in Figure 1. (Exact atomic coordinates are given in the Supporting Information; see below.) In these reactions, “Oₐd[2 x 2]” represents regions of O-covered Pt in the (2 x 2) structure (Figure 1a) and “Pt_clean,1 x 1” represents adsorbate-free Pt sites. Details of reaction energies are given in ref 36.

Reaction 3C involves an initial H₂O-to-Oₐd stoichiometry of 2:1 and produces a mixture of the (H₂O-OH)ₐd complex and pure OHₐd domains on the surface, with an overall H₂O/OH ratio in the final adlayer of 1:2.35 This reaction mimics as closely as possible the observed overlayer structure and stoichiometry of the experiments in ref 6. Reaction 2C involves an initial H₂O/Oₐd stoichiometry of 3:1 and produces exclusively the mixed (H₂O-OH)ₐd overlayer with exactly a 1:1 ratio. Notice that reaction 2C implies that only two-thirds of the total surface area is covered initially by (2 x 2)-O domains.

We include it to show the relative stability of this pure OH overlayer within DFT, but it has not been observed experimentally on Pt(111) without also producing (H₂O-OH)ₐd.

The calculated energies for these reactions are summarized in Table 2. It can be seen that the PBE and optB88-vdW results differ considerably, with the vdW functional yielding more favorable reaction energies (by 20–25 kJ/mol for reactions 2C and 3C). This is consistent with our recent work for water on Pt(111) with different water and O adatom stoichiometries. On the basis of the established structure of the √3-(H₂O-OH) overlayer, the precise reactions and structural models that best mimic the experiments are:

3H₂Oₖ + Oₐd[2 x 2] + 2Pt_clean,1 x 1 → 2[H₂O-OH]ₐd, √3x√3, √3

(2C)

2H₂Oₖ + Oₐd[2 x 2] → (H₂O-OH)ₐd, √3x√3 + OHₐd,1 x 1

(3C)

where the reaction numbers correspond to the same basic reactions as above, but the “C” implies a computed reaction, which requires more strict limitation to these specific initial and final structures. These structural models are shown schematically in Figure 1. (Exact atomic coordinates are given in the Supporting Information; see below.) In these reactions, “Oₐd[2 x 2]” represents regions of O-covered Pt in the (2 x 2) structure (Figure 1a) and “Pt_clean,1 x 1” represents adsorbate-free Pt sites. Details of reaction energies are given in ref 36.

Reaction 3C involves an initial H₂O-to-Oₐd stoichiometry of 2:1 and produces a mixture of the (H₂O-OH)ₐd complex and pure OHₐd domains on the surface, with an overall H₂O/OH ratio in the final adlayer of 1:2.35 This reaction mimics as closely as possible the observed overlayer structure and stoichiometry of the experiments in ref 6. Reaction 2C involves an initial H₂O/Oₐd stoichiometry of 3:1 and produces exclusively the mixed (H₂O-OH)ₐd overlayer with exactly a 1:1 ratio. Notice that reaction 2C implies that only two-thirds of the total surface area is covered initially by (2 x 2)-O domains.

We include it to show the relative stability of this pure OH overlayer within DFT, but it has not been observed experimentally on Pt(111) without also producing (H₂O-OH)ₐd.

The calculated energies for these reactions are summarized in Table 2. It can be seen that the PBE and optB88-vdW results differ considerably, with the vdW functional yielding more favorable reaction energies (by 20–25 kJ/mol for reactions 2C and 3C). This is consistent with our recent work for water on Pt(111) with different water and O adatom stoichiometries. On the basis of the established structure of the √3-(H₂O-OH) overlayer, the precise reactions and structural models that best mimic the experiments are:

3H₂Oₖ + Oₐd[2 x 2] + 2Pt_clean,1 x 1 → 2[H₂O-OH]ₐd, √3x√3, √3

(2C)

2H₂Oₖ + Oₐd[2 x 2] → (H₂O-OH)ₐd, √3x√3 + OHₐd,1 x 1

(3C)
of reaction enthalpies for the most accurate DFT method employed here, that is, the optB88-vdW functional. The experimental enthalpy for reaction 2 (−57.4 kJ/mol D$_2$O) is 17.6 kJ/mol less exothermic than the computed enthalpy for reaction 2C (−75.0 kJ/mol D$_2$O). However, because O$_{ad}$ is less stable in the (2 \times 2)-O domains of 1/4 ML coverage as used in reaction 2C than when it is spread out evenly across the surface at lower local coverage (1/6 ML O) as in the experiment of reaction 2, we must add 3 kJ/mol D$_2$O to reaction 2C. (This correction equals the difference in the integral heat of O adsorption at these two coverages, 9 kJ/mol O$_{ad}$ divided by 3 since reaction 2 has three D$_2$O molecules per O$_{ad}$.) This reduces the DFT enthalpy to −72.0 kJ/mol D$_2$O at the experimental coverage, leaving a 14.6 kJ/mol difference from the experimental value.

The measured enthalpy of −60.2 kJ/mol D$_2$O for reaction 3 in Table 1 is very close to the DFT enthalpy for reaction 3C in the last column of Table 2 of −59.7 kJ/mol D$_2$O. The discrepancy is <1 kJ/mol D$_2$O, which is likely to be to some extent fortuitous as this is beyond the accuracy expected for any DFT functional.

To summarize, the computed enthalpies differ by less than 15 and 1 kJ/mol D$_2$O from experimental measurements for reactions 2 and 3, respectively. Reaction 2’s enthalpy is predicted to be 12 kJ/mol D$_2$O more exothermic than reaction 3 by DFT, whereas their experimental enthalpies are indistinguishable within the error bars. The experimental error bars in Table 1 do allow reaction 2 to be more exothermic than reaction 3 by up to 3.1 kJ/mol D$_2$O, so there is no qualitative error here. If we average both reactions 2 and 3, the DFT enthalpy of reaction 2 to be more exothermic than reaction 3 by up to 3.1 kJ/mol D$_2$O, so there is no qualitative error here. If we average both reactions 2 and 3, the DFT enthalpy E_{DFT} of reaction 2C is 6.58 kJ/mol, which is very good agreement, especially in comparison to diH$_2$O and 1 kJ/mol D$_2$O from experimental measurements for reactions 2 and 3, respectively. Reaction 2

This could be large since a DO bond would include the excess activation energy for adsorption. The last column of Table 2 of

The measured enthalpy of −60.2 kJ/mol D$_2$O for reaction 3 in Table 1 is very close to the DFT enthalpy for reaction 3C in the last column of Table 2 of −59.7 kJ/mol D$_2$O. The discrepancy is <1 kJ/mol D$_2$O, which is likely to be to some extent fortuitous as this is beyond the accuracy expected for any DFT functional.

To summarize, the computed enthalpies differ by less than 15 and 1 kJ/mol D$_2$O from experimental measurements for reactions 2 and 3, respectively. Reaction 2’s enthalpy is predicted to be 12 kJ/mol D$_2$O more exothermic than reaction 3 by DFT, whereas their experimental enthalpies are indistinguishable within the error bars. The experimental error bars in Table 1 do allow reaction 2 to be more exothermic than reaction 3 by up to 3.1 kJ/mol D$_2$O, so there is no qualitative error here. If we average both reactions 2 and 3, the DFT enthalpy of reaction 2 to be more exothermic than reaction 3 by up to 3.1 kJ/mol D$_2$O, so there is no qualitative error here. If we average both reactions 2 and 3, the DFT enthalpy E_{DFT} of reaction 2C is 6.58 kJ/mol, which is very good agreement, especially in comparison to diH$_2$O and 1 kJ/mol D$_2$O from experimental measurements for reactions 2 and 3, respectively. Reaction 2

This could be large since a DO bond would include the excess activation energy for adsorption. The last column of Table 2 of
(29) We noted elsewhere19 that 150 K here corresponds to 160 K in the papers by Hodgson’s group3,4 due to systematic errors in thermocouples.
(30) Actually, this entry reports the average of several experimental runs that had an average O Ad precoverage of 0.18, with all precoverages being within 0.03 ML of that average.
(36) Reaction 2C’s energy is $2E_{\text{tot}}[(H_2O\cdot\cdot\cdotOH)_{ad,(\sqrt{3}\times\sqrt{3})}] - 3E_{\text{tot}}[H_2O g] - 2E_{\text{tot}}[O_{ad,(2\times2)}] - 2E_{\text{tot}}[\text{Pt}_{\text{clean}},(1\times1)]$, where E_{tot} for each surface species is the total energy per unit cell of that slab, for example, the $(H_2O\cdot\cdot\cdotOH)_{ad,(\sqrt{3}\times\sqrt{3})}$ slab for the first term and the (1×1) clean Pt slab for the last term, and $E_{\text{tot}}[H_2O g]$ is the total energy of H$_2$O gas. Reaction 3C’s energy is $E_{\text{tot}}[(H_2O\cdot\cdot\cdotOH)_{ad,(\sqrt{3}\times\sqrt{3})}] + E_{\text{tot}}[O_{ad,(1\times1)}] - 2E_{\text{tot}}[H_2O g] - E_{\text{tot}}[O_{ad,(2\times2)}]$. Reaction 4C’s energy is $2E_{\text{tot}}[O_{ad,(1\times1)}] + 2E_{\text{tot}}[\text{Pt}_{\text{clean}},(1\times1)] - E_{\text{tot}}[H_2O g] - E_{\text{tot}}[O_{ad,(2\times2)}]$. All calculations represent cases where all domains are so large that there are no edge effects.
(37) We noted elsewhere19 that 150 K here corresponds to 160 K in the papers by Hodgson’s group3,4 due to systematic errors in thermocouples.