Density Functional Theory

Erich Runge
Technische Universität Ilmenau, Germany

Key concepts, a.k.a. Slang

- Schrödinger Equation
 - Fundamental challenges
 - Mean-field theory
 - Nearsightedness & Exponential Wall Problem
 - Dephasing

Fundamental challenges: your chance!

Density Functional Theory and Alternatives
- Hohenberg-Kohn Theorem(s)
- Pre-HK: gradient expansion, TFDW,…
- Kohn-Sham equations
- Post-HK: "functional" theories
- Today’s challenges and developments
Point of departure

Single-particle Schrödinger equation

\[E \psi(r) = \hat{H} \psi(r) \]

\[\hat{H} = \hat{t} + \hat{v} = -\frac{\hbar^2}{2m} \Delta + v(r) \]

- Hydrogen atom, double slit, Aharonov Bohm effect..
- Spin..., relativistic effects...,

Many-particle Schrödinger equation

\[E \psi(r) = \hat{H} \psi(r) \]

\[\hat{H} = \hat{T} + \hat{V} + \hat{W} = \sum_i (\hat{t}_i + \hat{v}_i) + \frac{1}{2} \sum_{i \neq j} \hat{w}_{ij} \]

\[= \sum_i \left(-\frac{\hbar^2}{2m} \Delta_r + v(r_i) \right) + \frac{1}{2} \sum_{i \neq j} w(r_i - r_j) \]
Rock-solid?

Grid for Li with $Z=3$: $> 20^7 \approx 10^9$
Mean-field theory: “Hartree”

\[\epsilon_\nu \varphi_\nu(r) = \hat{\mathcal{H}}_{\text{Hartree}} \varphi_\nu(r) \]
\[\hat{\mathcal{H}}_{\text{Hartree}} = -\frac{\hbar^2}{2m} \Delta + v_{\text{external}}(r) + \int d^3r' \frac{e^2 \rho(r')}{4\pi\varepsilon_0 |r - r'|} \]
\[\rho(r) = \sum_{\text{occ.}} |\varphi_\nu(r)|^2 \]
\[\Psi_{\text{Hartree}}(r_1, r_2, \ldots, r_N) \sim \prod_{\nu \in \text{occ.}} \varphi_\nu(r_\nu) \]

Popular vote: ~ 100% YES

… but: “invalid wavefunction” (Pauli!)

\[\Psi_{\text{HF}}(r_1, r_2, \ldots, r_N) \sim \sum_{P=\text{permutation}} \text{sign}(P) \prod_{\nu \in \text{occ.}} \varphi_{P(\nu)}(r_\nu) = \sum_{P=\text{permutation}} \text{sign}(P) \prod_{\nu \in \text{occ.}} \varphi_\nu(r_{P(\nu)}) \]
Mean-field theory: “Hartree-Fock”

\[
\hat{h}_{\text{HF}} = \hat{h}_{\text{Hartree}} + \hat{h}_{\text{Fock}}
\]

\[
\left(\hat{h}_{\text{electro-static}} \varphi_{\nu} \right)_{r} = + \int d^{3}r' \frac{e^{2}}{4\pi\varepsilon_{0}} \frac{\rho(r', r')}{|r - r'|} \varphi_{\nu}(r)
\]

\[
\left(\hat{h}_{\text{Fock}} \varphi_{\nu} \right)_{r} = - \int d^{3}r' \frac{e^{2}}{4\pi\varepsilon_{0}} \frac{\rho_{\sigma}(r, r')}{|r - r'|} \varphi_{\nu}(r')
\]

\[
\rho_{\sigma=\uparrow\downarrow}(r, r') = \sum_{\nu \in \text{occ.}, s_{\nu}=\sigma} \varphi_{\nu}(r) \varphi_{\nu}^{*}(r')
\]

Fock- / Exchange term:
- still: ‘single-particle’
- integral operator
- ‘correction’, thus ‘-’
- HF (like all MFT) biased towards symmetry-breaking

\[
\epsilon_{\nu} \varphi_{\nu}(r) = \hat{h}_{\text{HF}} \varphi_{\nu}(r)
\]

\[\text{E}_{\text{exact}} - \text{E}_{\text{HF}} = \text{E}_{\text{correlation}}\]
Perturbation theory

Two major paradigms:

1.) Feynman Diagrams

\[\sim \text{HF} \quad \text{... and all the Rest ...} \]
2.) Configuration interaction

\[\{ CI \} = \alpha \prod_{\nu \in \text{occ.}} \varphi_P(\nu)(r_\nu) + \sum_{\mu_1 \nu_j} \alpha_{\mu_1, \nu_j} \prod_{\nu_j \rightarrow \mu_1} \varphi_P(\nu)(r_\nu) \]

\[+ \sum_{\mu_1 \mu_2 \nu_j \nu_k} \alpha_{\mu_1 \mu_2, \nu_j \nu_k} \prod_{\nu_j \rightarrow \mu_1, \nu_k \rightarrow \mu_2} \varphi_P(\nu)(r_\nu) + \ldots \]

≡ traditional quantum chemistry

"Pople diagram"

"better \(\varphi_\nu \)"

"more \(\mu_\mu \)"

Level of Theory
Food for thought:
Walter Kohn’s “exponential wall”

Nobel Lecture: Electronic structure of matter—wave functions and density functionals*

W. Kohn
Department of Physics, University of California, Santa Barbara, California 93106
[S0034-6861(99)00505-X]

CONTENTS

I. Introduction
II. Schrödinger Wave Functions—Few versus Many Electrons
 A. Few-electron systems—the H₂ molecule
 B. Many electrons—encountering an exponential wall
 C. Some meta-physical-chemical considerations

In the intervening more than six decades enormous progress has been made in finding approximate solutions of Schrödinger’s wave equation for systems with several electrons, decisively aided by modern electronic computers. The outstanding contributions of my Nobel Prize co-winner John Pople are in this area. The main objective of the present account is to explicate DFT, which is an alternative approach to the theory of electronic structure, in which the electron density distribution \(n(r) \)

\[
\Psi = \sum \prod \varphi_{\nu}^{(1)}
\]

\[
\Psi_{\text{system 2}} = \sum \prod \varphi_{\rho}^{(2)}
\]

\[
\Psi_{\text{system 3}} = \sum \prod \varphi_{\kappa}^{(3)}
\]

\[\ldots\]
A few remarks about this principle:

(1) The principle is generally a consequence of wave-mechanical destructive interference. It requires the presence of many particles, which need not be interacting.

(2) It is not universally valid. [superconductivity,…].

(3) The principle is tacitly assumed in much of chemistry and materials science.

(4) .. long range electric fields, as in ionic crystals, … must be self-consistently [treated]…
Wavefunctions of macroscopic electron systems

Submitted: 30 July 2018 • Accepted: 12 November 2018 •
Published Online: 15 January 2019

P. Fulde

AFFILIATIONS
Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany

*Electronic mail: fulde@pks.mpg.de

ABSTRACT
Wavefunctions for large electron numbers N are plagued by the Exponential Wall Problem (EWP), i.e., an exponential increase in the dimensions of Hilbert space with N. Therefore, they lose their meaning for macroscopic systems, a point stressed, in particular, by Kohn. The EWP has to be resolved in order to provide a solid basis for wavefunction based electronic structure calculations of macroscopic systems, e.g., solids. The origin of the EWP is the multiplicative property of wavefunctions when independent subsystems are considered. Therefore, it can only be avoided when wavefunctions are formulated so that they are additive instead, in particular, when matrix elements involving them are calculated. We describe how this is done for the ground state of a macroscopic electron system. Going over from a multiplicative to an additive quantity requires taking a logarithm. Here it implies going over from Hilbert space to the operator- or Liouville space with a metric based on
Food for thought:
Peter Fulde’s “local correlators”

Wavefunctions of macroscopic electron systems

\[\Psi_{\text{corr}} \sim \exp(- \sum_{\alpha} \hat{O}_{\alpha}) \Psi_{\text{mean-field}} \]

\[\langle \Psi_{\text{corr}} | \hat{A} | \Psi_{\text{corr}} \rangle = \sum_{\alpha_1 \alpha_2 \ldots \alpha_m} \langle \hat{O}_{\alpha_1} \hat{O}_{\alpha_2} \ldots \hat{A} \hat{O}_{\alpha_1'} \hat{O}_{\alpha_2'} \rangle_{\text{cumulant mean-field}} \]

- O(N)
- cf. nearsightedness

e.g. cusp condition

\[\hat{O}_{\alpha} \sim f(|r_i - r_j|) \]
Food for thought:
The role of “dephasing / de-correlating”

\[\Psi = \Psi_{\text{system 1}} = \sum_{\nu} \prod_{P} \varphi_{P}^{(1)} \]

\[\Psi_{\text{system 2}} = \sum_{P} \prod_{\varphi} \varphi_{\varphi}^{(2)} \]

\[\Psi_{\text{system 3}} = \sum_{P} \prod_{\kappa} \varphi_{\kappa}^{(3)} \]

Your chance !!!
Hohenberg-Kohn Theorem(s)

set of all "reasonable" potentials \(v \)

set of all \"reasonable\" groundstate density profiles \(\rho \)

set of all groundstate wavefunctions \(\psi \)

\[
\exists v(.) = F_{HK}[\rho(.)] \quad \text{iff} \quad (v_1 \rightarrow \rho \text{ and } v_2 \rightarrow \rho \iff v_1(r) = v_2(r) + \text{const})
\]
Hohenberg-Kohn Theorem (1964)

Consider Hamiltonians of the form (fixed interaction W)

$$\hat{H} = \hat{T} + \hat{W} + \hat{V}_{\text{extern}}$$

There exists $v(.) = F_{\text{HK}}[\rho(.)]$ if and only if

$$(v_1 \rightarrow \rho \text{ and } v_2 \rightarrow \rho \iff v_1(r) = v_2(r) + \text{const})$$

Ritz principle (assume non-degenerate ground states ;-

$$E^{(1)}_{gs} \leq \langle \psi^{(1)} | \hat{T} + \hat{W} + \hat{V}^{(1)} | \psi^{(1)} \rangle \leq \langle \psi^{(2)} | \hat{T} + \hat{W} + \hat{V}^{(1)} | \psi^{(2)} \rangle$$

$$= \langle \psi^{(2)} | \hat{T} + \hat{W} + \hat{V}^{(2)} | \psi^{(2)} \rangle + \int (v^{(1)}(r) - v^{(2)}(r)) \rho(r) \, d^3r$$

$$= E^{(2)}_{gs} + \int (v^{(1)}(r) - v^{(2)}(r)) \rho(r) \, d^3r$$

Analogously

$$E^{(2)}_{gs} < E^{(1)}_{gs} + \int (v^{(2)}(r) - v^{(1)}(r)) \rho(r) \, d^3r$$

And finally

$$E^{(1)}_{gs} + E^{(2)}_{gs} < E^{(1)}_{gs} + E^{(2)}_{gs}$$
Hohenberg-Kohn Theorem (DFT, 1964), Runge-Gross Theorem (td-DFT 1984) … and much more (temperature, fields¤ts, superconductivity, relativity, classical systems,…)

Issues:
\(v \)-representability
\(N \)-representability
Density matrices (!)

\[\exists \, v(r,t) = F \left[\rho(r,t) \right] \]
Slang and nomenclature

Homogeneous Fermi gas / electron gas (equation of state):

Energy densities are functions of the particle density, ...

\[\frac{\langle \hat{H} \rangle}{\Omega} = e_{\text{e-gas}}(\rho, T) \approx e_{\text{e-gas}}(\rho) \]
\[\frac{\langle \hat{T} \rangle}{\Omega} = \tau_{\text{e-gas}}(\rho, T) \approx \tau_{\text{e-gas}}(\rho) \]

... which are easily evaluated for non-interacting fermions

\[\frac{\langle \Phi_0 | \hat{T} | \Phi_0 \rangle}{\Omega} = \tau_0(\rho) = \frac{\hbar^2 k_F^5}{10 m_e \pi^2} \]
\[\frac{\langle \Phi_0 | (\hat{W} - \hat{V}_{\text{jellium}}) | \Phi_0 \rangle}{\Omega} = e_{x,0}(\rho) = -\frac{e^2 k_F^4}{16 \epsilon_0 \pi^4} \]

For PR reasons, the “unkown rest” is called “correlation energy” ;-)

\[e_{xc}(\rho) = e_{\text{e-gas}}(\rho) - \tau_0(\rho) \]

- e.g. Quantum MC \(\Rightarrow e_{xc}(\rho) \)
- Application, e.g.: stability of neutron stars
Inhomogeneous Fermi gas / electron gas: Gradient expansion

We need expectation values of functions of the Hamiltonian, e.g.,

\[\tau(x) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \rho(x, y)_{y=x} \]

\[\rho(x, y) = \sum_{\nu \in \text{occ.}, s_{\nu}=\sigma} \varphi_{\nu}(x) \varphi_{\nu}^*(y) = \langle x | \theta(E_F - \frac{\hat{p}^2}{2m} - \hat{\nu}) | y \rangle \]

\[= \int \langle x | \theta(E_F - \frac{\hat{p}^2}{2m} - \hat{\nu}) | k \rangle \underbrace{e^{-iky}}_{\langle k | y \rangle} dk \]

Gradient expansion [see: D. A. Kirzhnits, A.J. Meadows, Field Theoretical Methods in Many-body Systems]

\[f(\hat{A} + \hat{B}) |\alpha\rangle = \sum_{n=0}^{\infty} f^{(n)}(\alpha + \hat{B}) \hat{O}_n |\alpha\rangle \]

\[\hat{O}_1 = 1, \hat{O}_1 = 0, \hat{O}_2 = [\hat{A}, \hat{B}], \ldots \]

.. yields terms like

\[\hat{A} \equiv \nabla^2, \hat{B} \equiv E_F - v(r) = \frac{\hbar^2}{2m} k_F^2(r) \nabla^2 \Rightarrow \hat{O}_2 \sim (\nabla k_F(r))^2 \text{ etc.} \]
Gradient expansion

Straightforward evaluations

\[
\rho(r) = \frac{k_F^3(r)}{3\pi^2} + \frac{1}{24\pi^2} \frac{\Delta k_F^2(r)}{k_F(r)} - \frac{1}{96\pi^2} \frac{(\nabla k_F^2(r))^2}{k_F^3(r)} + \ldots
\]

\[
\tau(r) = \frac{\hbar^2}{m_e} \left(\frac{k_F^5(r)}{10\pi^2} - \frac{k_F(r) (\Delta k_F^2(r))}{48\pi^2} - \frac{1}{64\pi^2} \frac{(\nabla k_F^2(r))^2}{k_F(r)} + \ldots \right)
\]

\[
e_x(r) = -\frac{e^2}{4\pi\varepsilon_0} \left(\frac{k_F^4(r)}{4\pi^3} - \frac{1}{576\pi^3} \frac{(\nabla k_F^2(r))^2}{k_F^2(r)} + \ldots \right)
\]

and term-wise inversion

\[
k_F^5(r) = (3\pi^2)^{5/3} \rho(r) - \frac{5}{3} \frac{(3\pi^2)^2}{36\pi^2} \Delta \rho(r) + \ldots
\]

yields our first non-trivial density functional :-) a.k.a TFDW theory

\[
\tau[\rho(\cdot)] = \tau(\rho, \nabla \rho, \ldots) = \frac{\hbar^2}{m_e} \left(\frac{3(3\pi^2)^{2/3}}{10\pi^2} \rho^{5/3}(r) + \frac{1}{72} \frac{(\nabla \rho(r))^2}{\rho(r)} - \frac{1}{12} \Delta \rho(r) + \ldots \right)
\]

\[
e_x[\rho(\cdot)] = e_x(\rho, \nabla \rho, \ldots) = -\frac{e^2}{4\pi\varepsilon_0} \left(\frac{3\sqrt{3}}{4\sqrt[3]{\pi}} \rho^{4/3}(r) + \frac{7}{432\pi^{3/2} \sqrt[3]{3\pi^2}} \frac{(\nabla \rho(r))^2}{\rho^{4/3}(r)} + \ldots \right)
\]
TFDW theory of the neutral atom

\[E = E[\rho(.)] = \int_0^\infty \left(-\frac{Ze^2}{4\pi\varepsilon_0} \frac{\rho(r)}{r} + v_{\text{Hartree}}(r) \rho(r) \right) 4\pi r^2 dr \]

\[\int_0^\infty \left(\tau_0 (\rho(r), \frac{d\rho(r)}{dr}, \ldots) + e_x (\rho(r), \frac{d\rho(r)}{dr}, \ldots) \right) 4\pi r^2 dr - \lambda \int_0^\infty \rho(r) 4\pi r^2 dr \]

Minimize

More slang: LDA

Works quite well

<table>
<thead>
<tr>
<th>(Z)</th>
<th>(-E_{\text{HF}}) (2Ry)</th>
<th>(-E_{\text{TFDW}}) (2Ry)</th>
<th>error (%)</th>
<th>(-E_{0.024}) (2Ry)</th>
<th>error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ne (10)</td>
<td>128.6</td>
<td>140</td>
<td>8.8</td>
<td>129.56</td>
<td>0.78</td>
</tr>
<tr>
<td>Xe (54)</td>
<td>7232</td>
<td>7559</td>
<td>4.5</td>
<td>7253</td>
<td>0.01</td>
</tr>
<tr>
<td>U (92)</td>
<td>25664</td>
<td>26618</td>
<td>3.7</td>
<td>25656</td>
<td>0.03</td>
</tr>
<tr>
<td>(120)</td>
<td>48203</td>
<td>49838</td>
<td>3.4</td>
<td>48191</td>
<td>0.02</td>
</tr>
</tbody>
</table>

The “original sin of DFT”

0.014..* \(\frac{(\nabla \rho(r))^2}{\rho(r)} \) \rightarrow 0.024* \(\frac{(\nabla \rho(r))^2}{\rho(r)} \)

Works amazingly well !!!

Construction principle:
Satisfaction of exact constraints
“The original sin of DFT” and “the character of DFT”

Is this “theoretical physics”?

Slang: “ab-initio” and “first principles”

Primera Divisió 2019
B2PLYP, B3LYP, B3LYP-D, B97-D, CAM-B3LYP, DSD-PBEP86, HSE, LDA, M06, M06-2X, M06-L, PBE, PBE-D, PBE0 (PBE1PBE), PW91, revPBE, SCAN, TPSSh, wB97X-D, wB97X-V

Segona Divisió 2019
B3PW91, B97M-V, BEEF-vdW, BHandH, BLYP, BP86, DSD-BLYP, LC-PBE, LC-wPBE, OLYP, optB88-vdW, PBESol, PW6B95, PW95-D3, revTPSS, revTPSS-D, RPA, RPBE, S12g, SAOP, SSB-D, wB97M-V

Suggestions
PBESol, BEEF-vdW, 8 additional slots
Send message to marcel.swart@udg.edu for additional suggestions

DFT2018 poll
organized by:
marcel swart
f. matthias bickelhaupt
miquel duran

contents
The annual popularity poll for density functionals:
density functionals: edition 2018
“The character of DFT”…

… as formulated by Hardy Gross

The functional $E_{xc}[\rho]$ is universal:

Curse or blessing?

Only **ONE** functional needs to be approximated.

Functional can be systematically improved, i.e. results will improve - on average - for all systems.

Systematic improvement for a single given system is not possible.
TFDW vs. shell structure

Recall QM 101’s hydrogen atom and the shell structure

Quiz: Which one is better, blue or green?

Answer:

The important point: This type of DFT does not yield shells!

My own guess: develop density-matrix theory $E = E[\rho(x, y)]$, but…
A side remark: Electron density vs. valence-electron density

Electron density

Valence electron density

Keep your eyes and ears open during the summer school ;-)
Kohn-Sham equations

“Parametrize” density in terms of (fictitious) KS orbitals:

\[\rho(r) = \sum_{\text{occ.}} |\phi_\nu(r)|^2 \]

\[\tau_{KS}(r) = \sum_{\text{occ.}} \frac{\hbar^2}{2m_e} |\nabla \phi_\nu(r)|^2 \]

Define “ad-hoc”

Evaluate

\[\frac{\delta E}{\delta \rho(r')} \frac{\delta \rho(r')}{\delta \phi_\nu(r)} \]

Slang: xc potential

\[\epsilon_\nu \phi_\nu(r) = \left(-\frac{\hbar^2}{2m} \Delta + v_{\text{external}}(r) + v_{\text{Hartree}}(r) + v_{\text{xc}}(\rho(r), \nabla \rho(r), \ldots) \right) \phi_\nu(r) \]

\[= \hat{h}_{KS}(\rho(r), \nabla \rho(r), \ldots) \phi_\nu(r) \]

- Shell structure issue: settled almost automatically!
- Is there any physics in \(\phi_\nu \) and \(\epsilon_\nu \) ??!!????...

Keep your eyes and ears open during the summer school ;-)
Slang: “interacting” and “KS” Green’s functions & response functions

$$\{\epsilon_\nu, \phi_\nu(r)\} \iff iG_{KS}(r, r'; E) = \sum_\nu \frac{\phi_\nu(r)\phi^*_\nu(r')}{E - \epsilon_\nu - i0^+}$$

$$\iff G_{KS}(r, r'; t) = \theta(t) \sum_\nu \phi_\nu(r)\phi^*_\nu(r') e^{-i\epsilon_\nu t/\hbar}$$

$$G(r, r'; t) = \langle \Psi_{\text{exact}} | \hat{\psi}_{r't}^+ \hat{\psi}_{r0} | \Psi_{\text{exact}} \rangle$$

$$\rho(r, r') = G(r, r'; t = 0)$$

HK: no loss of “information”
“Functional Theories”

Exact

Many-body perturbation theory

DFT

Density-matrix-based theories

Correlated wavefunctions

Good functionals: rather easy, e.g. GW approximation

Numerics: Very, very hard

\[
\Sigma(k, E) = \frac{G(k - q, E - E')}{} W(q, E')
\]

difficult

rather easy
DFT is “damned useful” ⇔ Nobel Prize 1998 for W. Kohn

.. but there are conceptual challenges

Ask yourself: What should be DFT’s answer?
A conceptual challenge: What should be DFT's answer?

Ahmed Zewail, Nobel Prize 1999
A big step towards answers: Hardy Gross’ theory of nonadiabatic and quantum nuclear effects

Theorem: The exact wave function

\[\hat{H} \Psi(\{r_j\}, \{R_I\}) = E \Psi(\{r_j\}, \{R_I\}) \]

can be factorized in a unique way into

\[\Psi(\{r_j\}, \{R_I\}) = \Phi_{\{R_I\}}(\{r_j\}) \cdot \chi(\{R_I\}) \]

with

\[\int \cdots \int |\Phi_{\{R_I\}}(\{r_j\})|^2 dr_1 \ldots dr_n = 1 \ \forall \{R_I\} \]

Equations of motion have been derived.
Hardy Gross’ theory of nonadiabatic and quantum nuclear effects

BO: Born-Oppenheimer

PES: Potential energy surface
Progress in science: 4th paradigm, data science, AI,...

Victor Klemperer (9 October 1881 – 11 February 1960) was a Romance languages scholar who also became known as a diarist. His journals, published in Germany in 1995, detailed his life under the German Empire, the Weimar Republic, the Third Reich, and the German Democratic Republic. Those covering the period of the Third Reich have since become standard sources and have been extensively quoted by Saul Friedländer,[1] Michael Burleigh,[2] Richard J. Evans,[3] and Max Hastings.[4] (from Wikipedia)

Sprache, die für dich dichtet und denkt...
(Language, that thinks for you...)

Evolution, Ferns, Reptiles, Viruses, Entropie, Adiabaticity, Mean-field vs. Correlations, ...
Thank you for your attention!
Enjoy the Summer School, enjoy DFT!

Density Functional Theory

• Schrödinger Equation
 • Fundamental challenges
 • Mean-field theory
 • Nearsightedness & Exponential Wall Problem
 • Dephasing

• Density Functional Theory and Alternatives
 • Hohenberg-Kohn Theorem(s)
 • Pre-HK: gradient expansion, TFDW,…
 • Kohn-Sham equations:
 • Post-HK: "functional" theories
 • Today’s challenges and developments