Ab initio atomistic thermodynamics

Sergey Levchenko
Skoltech, Moscow and FHI, Berlin
Thermodynamics

Why thermodynamics for materials?

A material is a collection of a large number of particles -- statistics starts to play a significant role at finite T

Thermodynamics determines defect concentrations and phase transformations, and influences magnetic properties, surface reactions, and crystal growth (the latter two are controlled by kinetics)

There is always a particle exchange between the material and its environment at finite T
Thermodynamics

Example

Consider a metal surface in an oxygen atmosphere

\[\nu = \frac{p}{\sqrt{2\pi nmkT}} \]

For \(T = 300 \) K, \(p = 1 \) atm \(\Rightarrow \) \(\nu \sim 10^8 \) site\(^{-1}\) s\(^{-1}\)

Requires \(p \leq 10^{-12} \) atm to keep a “clean” surface clean; surface can also lose atoms

Adsorption will take place until the equilibrium is reached
Example

Consider a metal surface in an oxygen atmosphere.

The point of equilibrium depends on temperature, pressure, volume, …
Thermodynamics

- Thermodynamic potentials
 - Internal energy \(U(S, V, \{N\}) \)
 - Enthalpy \(H(S, p, \{N\}) = U + pV \)
 - Helmholtz free energy \(F(T, V, \{N\}) = U - TS \)
 - Gibbs free energy \(G(T, p, \{N\}) = U - TS + pV \)
 - Energy balance equation
 \[dU = T dS - p dV + \sum_i \mu_i dN_i \]
 - With chemical potentials
 \[\mu_i = \left(\frac{\partial U}{\partial N_i} \right)_{S,V} = \left(\frac{\partial H}{\partial N_i} \right)_{S,p} = \left(\frac{\partial F}{\partial N_i} \right)_{T,V} = \left(\frac{\partial G}{\partial N_i} \right)_{T,p} \]
Thermodynamics

- Reaching the equilibrium

At constant T a system minimizes its free energy $(-TS)$, not the internal energy U

If also volume V is constant, the energy minimized is the Helmholtz free energy $F = U - TS$

If (T, p) are constant, the energy minimized is the Gibbs free energy $G = U + pV - TS$
Thermodynamics

Statistical thermodynamics

\[S = k \log W \]

\(W \) - number of microstates for a given macrostate

This is “only” a postulate - but it works!

Why it should work: (i) in equilibrium \(W \to \text{max} \), so that \(S \to \text{max} \); (ii) \(S \) is additive, but \(W \) is multiplicative
Thermodynamics

Statistical thermodynamics

Let us consider a system that can be in one of states i with energy E_i

At a given T, the probability of the system to be in state i is

$$P_i = \frac{e^{-E_i/kT}}{Z}, \quad Z = \sum_i e^{-E_i/kT}, \quad \sum_i P_i = 1$$

Ergodic hypothesis: average over time is equal to the average over ensemble - holds if all states are equiprobable (for most realistic systems)

What are the values of entropy and thermodynamic potentials?
Thermodynamics

- **Statistical thermodynamics**
 Consider the ensemble of N replicas of the system - let us count microstates of this ensemble

A microstate describes which replicas are in which state, while a macrostate describes how many replicas are in each state; thus: $W = \frac{N!}{N_1!(N-N_1)!} \frac{(N-N_1)!}{N_2!(N-N_1-N_2)!} \ldots = \frac{N!}{N_1!N_2!\ldots}$

where N_1, N_2, \ldots are the numbers of the replicas in state 1, 2,

$N_i = NP_i = N \frac{e^{-E_i/kT}}{Z}$, $\hat{S} = k\ln W = k\ln(N!) - k \sum_i \ln(N_i!)$

Z - canonical *partition function*

Use Stirling’s formula: $\ln(N!) \approx N\ln N - N$
Thermodynamics

Statistical thermodynamics

\[
\tilde{S} = k \ln W = N k \ln Z + \frac{N}{TZ} \sum_i E_i e^{-E_i/kT}
\]

Internal energy, by definition:

\[
\tilde{U} = \frac{N}{Z} \sum_i E_i e^{-E_i/kT} = \frac{NkT^2}{Z} \frac{\partial Z}{\partial T}
\]

\[
U = \frac{\tilde{U}}{N} = \frac{kT^2}{Z} \frac{\partial Z}{\partial T} = kT^2 \frac{\partial \ln Z}{\partial T}
\]

\[
S = \frac{\tilde{S}}{N} = \frac{k \ln W}{N} = k \ln Z + \frac{U}{T} = k \ln Z + kT \frac{\partial \ln Z}{\partial T}
\]

\[
F = U - TS = -kT \ln Z
\]

\[
G = F + pV = -kT \ln Z + pV
\]

\[
\mu(T, p) = \left(\frac{\partial G}{\partial N_p} \right)_{T,p} = \frac{\partial}{\partial N} (-kT \ln Z + pV)_{T,p}
\]
Thermodynamics

- **Statistical thermodynamics**

 Practical example: surface free energy

\[\mu_{O_2}(T, p_{O_2}) \]

Change in Gibbs free energy upon addition of O to the surface:

\[\Delta G = G_{surf}(N_O + 1) - \left(G_{surf}(N_O) + \frac{1}{2} \mu_{O_2} \right) \]

since \(\mu_O = \frac{1}{2} \mu_{O_2} \)

Goal - find surface composition and structure that minimizes \(G \) at given \(T, p \)
Thermodynamics

- **Statistical thermodynamics**

 Practical example: surface free energy

 \[\Delta \gamma (N_O, T, p) = \frac{1}{A} \left[G_{\text{surf}} (N_O, T, p) - G_{\text{surf}} (N_{O}^{\text{ref}}, T, p) - \mu_O (N_O - N_{O}^{\text{ref}}) \right] \rightarrow \min_{N_O} \]

 where \(A \) is the surface area, \(N_{O}^{\text{ref}} \) is the number of O atoms in the reference system

 \[G_{\text{surf}} (N_O) - G_{\text{surf}} (N_{O}^{\text{ref}}) = \Delta E_{\text{surf}} + \Delta U_{\text{vib}} - T \Delta S_{\text{vib}} - T \Delta S_{\text{conf}} + p \Delta V \]

 \[\mu_O (T, p) - ? \]
Thermodynamics

- **Statistical thermodynamics**

 Let us consider a gas of \(N \) non-interacting diatomic (for simplicity) molecules.

 Each molecule has the following degrees of freedom: nuclear, electronic, *translational*, rotational, vibrational.

 \[
 Z = \frac{(z_{\text{transl}})^N}{N!} (z_{\text{rot}})^N (z_{\text{vib}})^N (z_{\text{el}})^N (z_{\text{nucl}})^N
 \]

 Translational states are invariant with respect to any permutations of molecules (indistinguishable molecules).

 \(z_x \) - partition function for the degree of freedom \(x \) for a single molecule.
Thermodynamics

- Statistical thermodynamics

\[\mu(T, p) = \frac{\partial}{\partial N} (-NkT \ln(z_{transl}) + kT \ln N! - NkT \ln(z_{rot}) - \]

Remember ideal gas law \(pV = NkT \) and Stirling’s formula

\[\mu(T, p) = -kT \ln \left(\frac{z_{transl}}{N} \right) - kT \ln(z_{rot}) - kT \ln(z_{vib}) - kT \ln(z_{el}) - kT \ln(z_{nucl}) + kT \]

\[\frac{z_{transl}}{N} = \frac{V}{N} \int e^{-\frac{\hbar k^2}{2mkt}} d^3k = \frac{V}{N} \left(\frac{2\pi mkT}{\hbar^2} \right)^{\frac{3}{2}} = \frac{kT}{p} \left(\frac{2\pi mkT}{\hbar^2} \right)^{\frac{3}{2}} \]

required input - molecule’s mass \(m \)

\[z_{el} = \sum_i (2s_i + 1) e^{-\frac{E_i}{kT}} \approx (2s_0 + 1) e^{-\frac{E_0}{kT}} \rightarrow \mu_{el} \approx E_0 - kT \ln(2s_0 + 1) \]

required input - \(E_0, s_0 \)
Thermodynamics

- Statistical thermodynamics

\[z_{\text{rot}} = \frac{1}{\sigma} \sum_J (2J + 1) e^{-\frac{B_0 J(J+1)}{kT}} \approx \frac{1}{\sigma} \int_0^\infty (2J + 1) e^{-\frac{B_0 J(J+1)}{kT}} dJ = \frac{T}{\sigma \theta_r} \]

where \(\sigma = 2 \) for homonuclear molecules (indistinguishable with respect to permutation of the two identical nuclei), \(\sigma = 1 \) for heteronuclear molecules,

\[\theta_r = \frac{\hbar^2}{2kI}, \quad I = \frac{m_A m_B}{m_A + m_B} d^2, \quad d \text{ is the bond length} \]

\[\mu_{\text{rot}} \approx -kT \ln \left(\frac{2kTI}{\sigma \hbar^2} \right), \text{required input - rotational constant } B_0 = \frac{\hbar^2}{2I} \]

(calculated or from microwave spectroscopy)
Thermodynamics

Statistical thermodynamics

$$z_{vib} = \prod_{i=1}^{M} \sum_{n=0}^{\infty} e^{-\left(n+\frac{1}{2}\right)\frac{\hbar\omega_i}{kT}} = \prod_{i=1}^{M} e^{-\frac{\hbar\omega_i}{2kT}} \sum_{n=1}^{\infty} e^{-\frac{n\hbar\omega_i}{kT}} =$$

$$= \prod_{i=1}^{M} \frac{e^{-\frac{\hbar\omega_i}{2kT}}}{1-e^{-\frac{\hbar\omega_i}{kT}}} \text{ (used the fact that sum over } n \text{ is a geometric series)}$$

For a diatomic molecule \(\mu_{vib} = \frac{\hbar\omega}{2} + kT \ln\left(1 - e^{-\frac{\hbar\omega}{kT}}\right)\)

required input - vibrational frequency \(\omega\)

In most practical cases, we can neglect the interaction between nuclear spins, so that \(z_{nucl} \approx 1\) (not correct at very low temperatures)
Ab initio atomistic thermodynamics

It is convenient to define a reference for \(\mu(T, p) \)

\[
\mu(T, p) = E_0 + \Delta \mu(T, p)
\]

Alternatively:

\[
\Delta \mu(T, p) = \Delta \mu(T, p^O) + k_B T \ln\left(\frac{p}{p^O} \right)
\]

and \(\Delta \mu(T, p^O = 1 \text{ atm}) \) from thermochemical tables (e.g., JANAF)
Thermodynamics

- *Ab initio* atomistic thermodynamics

\[
\mu_{O_2}(T, p_{O_2})
\]

\[
\Delta \gamma(N_O, T, p) = \frac{1}{A} \left[\Delta E_{surf} + \Delta U_{vib} - T \Delta S_{vib} - T \Delta S_{conf} + p \Delta V - \mu_O \Delta N_O \right]
\]

electronic structure calculations

\[
\Delta F_{vib}(T, V) = V \int_0^\infty f(T, \omega) \left(\sigma(\omega) - \sigma_{ref}(\omega) \right) d\omega,
\]
 phonon density of states, \(f(T, \omega) = \frac{\hbar \omega}{2} + kT \ln(1 - e^{-\hbar \omega/kT}) \)
Thermodynamics

Ab initio atomistic thermodynamics

Example: Metal surface in contact with O_2 gas

Reservoir: $\mu_0(T, p_{O_2})$ from ideal gas, $N^\text{ref}_O = 0$ (bare metal surface is the reference system), $\frac{1}{2}E_{O_2}$ is the reference for the chemical potential of O: $\mu_0 = \Delta\mu_0 + \frac{1}{2}E_{O_2}$

Neglect for now ΔF_{vib} and $T\Delta S_{\text{conf}}$

$$\Delta\gamma(T, p_{O_2}) = \frac{1}{A} \left[E_{\text{surf}}(N_O) - E_{\text{surf}}(0) - N_O \frac{1}{2}E_{O_2} \right] - \frac{1}{A} N_O \Delta\mu_0(T, p_{O_2})$$
Example: Pd(100)

\[\Delta \gamma (T, p_{O_2}) = \frac{1}{A} \Delta E_{surf} (N_O) - \frac{1}{A} N_O \Delta \mu_O (T, p_{O_2}) \]

\(p(2\times2) \) O/Pd(100)

\((\sqrt{5} \times \sqrt{5}) R27^\circ \) PdO(101)/Pd(100)

First-principles atomistic thermodynamics: constrained equilibria

\[\mu_O(T, p_O) \quad \text{constrained equilibria} \quad \mu_CO(T, p_CO) \]

\[\Delta \gamma(T, p_O) = \frac{1}{A} \left[E_{surf}(N_O, N_CO) - E_{surf}^{ref} - N_O \frac{1}{2} E_{O2} - N_CO E_{CO} \right] \]

\[-\frac{1}{A} N_O \Delta \mu_O(T, p_O) - \frac{1}{A} N_CO \Delta \mu_CO(T, p_CO) \]

Surface phase diagrams

CO oxidation on RuO₂(110)

When vibrations do matter

\[\mu_0 \text{(eV)} \]

ZnO (0001) surface phase diagram in H$_2$O-O$_2$ atmosphere – no vibrations

No structure with (2x2) periodicity as seen at the ZnO(0001) surface annealed in a dry oxygen atmosphere (containing at maximum 2 ppm water)

When vibrations do matter

A (2x2)-O adlayer structure is stabilized by vibrational entropy effects

Observe at "humid" conditions

Thermodynamics of Defects

- Very small concentrations of defects can significantly alter materials properties

Small concentration of Fe impurities are visible by naked eye in intrinsically transparent MgO

Si semiconductors contain 10^{-9}-10^{-3} intentional impurities per atom
“My precious!”: Perfect defected gems

Cr:Al₂O₃ V:Al₂O₃ Fe:Al₂O₃ Fe:Al₂O₃

Impurities are responsible for the color of sapphire and many other precious stones

Typical concentrations: 100-10000 ppm

Fe,Ti:Al₂O₃
Entropy

\[G = U + pV - TS \]

\[S = k \ln W \]

\(W \) – number of microstates

1) Solid: vibrational entropy (phonons)
2) Solid: electronic entropy
3) Gas: vibrational, rotational, translational, etc. (part of \(\mu_i \))
4) Solid: defect disorder
Configurational entropy

\[G = [U + pV - T(S - S_{\text{config}})] - TS_{\text{config}} = \tilde{G} - TS_{\text{config}} \]

\(N \) equivalent defect sites in the sold

\(n \) defects

If defects do not interact:

\[S_{\text{config}} = k \ln \frac{N!}{n!(N-n)!} \]

Stirling’s formula:

\[\ln(n!) = n(\ln n - 1 + \delta), \quad n \gg 1, \quad \delta \sim \frac{\ln(2\pi n)}{2n} \]

\[S_{\text{config}} \approx k \left[N \ln N - n \ln n - (N-n) \ln(N-n) \right] \]

Good approximation only on a macroscopic scale
Defect concentration

Minimize the free energy of the system with respect to the number of defects

\[G(n) = \tilde{G}_0 + n\Delta G_f - TS_{\text{config}}(n) \]

If defects do not interact:

\[\frac{n}{N} = \frac{1}{\exp(\Delta G_f / kT) + 1} \]

\[\frac{n}{N} \ll 1 \iff \exp(\Delta G_f / kT) \gg 1 \]

\[\frac{n}{N} \approx \exp\left(-\Delta G_f(T, p) / kT\right) \text{ – textbook formula} \]
Charged defects and charge compensation

\[\frac{n}{N} = \frac{1}{\exp(\Delta G_f / kT) + 1} \]

for non-interacting defects

But can charged defects be considered as non-interacting?!

\[V_{\text{interact}} = \frac{Q_1 Q_2}{|r_1 - r_2|} \]

Coulomb interaction – long-range!
For a system of charges:

\[V_{\text{interact}} = \frac{Q_i Q_j}{|r_i - r_j|} \]

For a system of charges:

\[V_{\text{interact}} = \frac{1}{2} \sum_{i \neq j} \frac{Q_i Q_j}{|r_i - r_j|} \]

In the thermodynamic limit \((N \to \infty) \) the electrostatic energy of charges with any finite concentration diverges.

Charged defects must be compensated in realistic materials.
For a system of charges:

\[V_{\text{interact}} = \frac{1}{2} \sum_{i \neq j} \frac{Q_i Q_j}{|r_i - r_j|} \]

In the thermodynamic limit \((N \to \infty)\) the electrostatic energy of charges with any finite concentration diverges.

Typical dependence of the defect formation energy as a function of unit cell size.
Charged defects and charge compensation

Typical dependence of the defect formation energy as a function of unit cell size

In standard periodic calculations the charge per unit cell is compensated by a uniform background charge (occurs naturally as a regularization of the Ewald summation)

The compensated defects interact much weaker with each other

But they do interact strongly with the compensating charge (~1/L)
Local and global effects of doping

In realistic semiconductors, charged defects can be compensated by the *depletion* of charge carriers (electrons or holes).

Local effect of doping
- Chemical bond formation,
- Local relaxation

Global effect of doping
- Interaction with the compensating charge

Formation energy and concentration of charged defects depend strongly on the distribution of the defects and the compensating charge.
Charged defects in a doped material

\[\Delta G(n) = n \Delta G_f(n \to 0) + \frac{1}{2} \varepsilon_0 \int \varepsilon(\mathbf{r}) |\mathbf{E}|^2 d^3 r - TS_{\text{config}}(n) \]

- **formation energy in the dilute limit**
- **electrostatic energy at finite \(n \)**

\[S_{\text{config}} = k \ln Z + \frac{U}{T} \]

The charged defects are screened by the compensating charge:

\[S_{\text{config}} \approx k \ln \frac{N!}{n!(N-n)!} \]
Space charge formation and band bending

Space charge region $z_{SC} = \sigma/eN_D$ causes band bending and electric field

N_D -- dopant concentration

σ -- surface charge due to charged vacancies
Band bending

\[
\Delta G_f^{VCA} (\sigma, d) = E_{\text{vac}}^q (\sigma, d)(+q\varepsilon_{\text{VBM}}) - E_{\text{host}} (\sigma, d) + \frac{1}{2} E_{O_2}
\]
Band bending

$$\Delta G_f^{VCA} (\sigma, d) = E_{\text{vac}}^q (\sigma, d) (+q\varepsilon_{\text{VBM}}) - E_{\text{host}} (\sigma, d) + \frac{1}{2} E_{O_2}$$

\[1/L (\text{Å}^{-1}) \]

\[\frac{1}{2} \varepsilon_0 \int |E|^2 d^3r = -C \sqrt{|\sigma|} + qE^{SC} (d), \quad E^{SC} (d) = \frac{e |\sigma|}{6\varepsilon_0} d \]
$^{2+}$ F concentration at p-MgO(001)

![Graphs showing the concentration of F as a function of dopant concentration at different temperatures.](image-url)
Sampling configurations

- Coarse-graining potential-energy surface (PES)
Sampling configurations: cluster expansion

- Coarse-graining potential-energy surface (PES)

Phase transformation in an alloy or adsorbate layer at a surface
Summary

- *Ab initio* atomistic thermodynamics approach allows to model materials in thermodynamic equilibrium at realistic temperatures and pressures from first principles.
- Surface phase diagrams and defect concentrations as a function of temperature and pressure are two prominent examples.
- Doping should be considered as a thermodynamic variable, along with temperature and pressure.